Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) IH vuông góc với AB => góc AHI=90 độ
IK vuông góc với AC=> góc AKI=90 độ
Xét tứ giác AHIK có góc AHI+ góc AKI= 90 độ + 90 độ = 180 độ
Suy ra AHIK nt
b) Từ a) ta có: góc KAM = góc KHI (cùng chắn cung KI)
Trong đtron (O) có: góc KAM = góc MBC( gnt cùng chắn cung CM)
Suy ra: góc KHI=góc MBC
c)
c: AHIK nội tiếp
=>góc AIK=góc AHK
BHKC nội tiếp nên góc ICK=góc AHK
=>góc ICK=góc AIK
=>góc AIC=90 độ
a) Xét (O) có
\(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{ACB}=90^0\)
Xét tứ giác BHKC có
\(\widehat{BHK}+\widehat{BCK}=180^0\)
nên BHKC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a) Dễ thấy: góc MQA=90độ
MA, MC là 2 tiếp tuyến nên MO vuông góc với AC hay góc MIA=90 độ
suy ra AIQM là tứ giác nội tiếp
b) AIQM là tứ giác nội tiếp nên: góc IMQ = góc QAI
mà góc QAI = góc QBC nên góc IMQ = góc QBC
Hay OM // BC