Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Hơi dài, mình nói sơ sơ thôi nha. Cái hình thì bạn tự vẽ nha.)
Vẽ đường tròn tâm \(O\) ngoại tiếp tam giác \(ABC\) và vẽ đường kính \(AK\) của đường tròn này.
Dễ thấy \(K,H,M\) thẳng hàng và \(BKCH\) là hình bình hành.
Bây giờ vẽ \(AF\) cắt \(\left(O\right)\) tại \(L\).
Do các tứ giác \(ALBC,DEBC\) nội tiếp nên CM được \(FA.FL=FB.FC=FD.FE\).
Và suy ra được \(ALED\) nội tiếp.
Nhận thấy \(AED\) nội tiếp trong đường tròn đường kính \(AH\) nên \(AL⊥LH\).
Mà \(AL⊥LK\) do \(AK\) là đường kính. Vậy \(L,H,K,M\) thẳng hàng.
Tam giác \(AFM\) có đường cao \(AD\) và \(ML\) cắt nhau tại \(H\) nên \(FH⊥AM\).
Cho tam giác ABC nhọn (AB<AC)nội tiếp (O;R). Ly điểm M tuỳ ý trên cung nhỏ BC, kẻ MP vg góc AB, MR vg góc AC và PR cắt BC tai Q
- Cm: tg APMR noi tiep
- Cm: MQ vg goc BC va PM.CM=BM.MR
- Kẻ đg cao AD va CE cua Tam giac ABC cắt nhau tai H. Đg kính BK cat DE tai I. Cm: tg DCKI noi tiep dg tron
- Ke CS vg góc AM tai S. Cm: PQ=ES
ai tích mình tích lại