K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABM và ΔADM có 

AB=AD(gt)

\(\widehat{BAM}=\widehat{DAM}\)(AM là tia phân giác của \(\widehat{BAD}\))

AM chung

Do đó: ΔABM=ΔADM(C-g-c)

Suy ra: MB=MD(Hai cạnh tương ứng) và \(\widehat{ABM}=\widehat{ADM}\)(Hai góc tương ứng)

Ta có: \(\widehat{ABM}+\widehat{EBM}=180^0\)(hai góc kề bù)

\(\widehat{ADM}+\widehat{CDM}=180^0\)(hai góc kề bù)

mà \(\widehat{ABM}=\widehat{ADM}\)(cmt)

nên \(\widehat{EBM}=\widehat{CDM}\)

Xét ΔBME và ΔDMC có 

\(\widehat{EBM}=\widehat{CDM}\)(cmt)

MB=MD(cmt)

\(\widehat{BME}=\widehat{DMC}\)(hai góc đối đỉnh)

Do đó: ΔBME=ΔDMC(g-c-g)

Suy ra: ME=MC(Hai cạnh tương ứng)

Xét ΔMEC có ME=MC(cmt)

nên ΔMEC cân tại M(Định nghĩa tam giác cân)

1 tháng 5 2018

A B C M D E

1 tháng 5 2018

xét tam giác AMB và AMD , có:

AM:chung

DAM=MAB

AD=AB(gt)

=> tam giác AMB = AMD (C.G.C.)

=> MB=MD

a.Xét tam giác DBC và tam giác ECB có:

DB=EC (AB=AC và AD=AE)

góc ABC = góc ACB (cân tại A)

BC là cạnh chung

Do đó tam giác DBC = tam giác ECB (c.g.c)

Suy ra BE= CD (ĐPCM)

16 tháng 2 2016

a. Ta có: AD + DB = AB; AE + EC = AC mà AD = AE; AB = AC

=> DB = EC

\(\Delta\)DCE và \(\Delta\)EBD có:

      DB = EC (cmt)

      B = C (gt)

      DC: cạnh chung

=> \(\Delta\)DCE = \(\Delta\)EBD (c.g.c)

=> BE = CD (hai cạnh tương ứng)

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
6 tháng 2 2021

cặc