Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O) có 3 đường cao AD, BE, CF cắt nhau...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2021

6LG9e2i.png

a) Vì \(\hept{\begin{cases}AD\perp BC\\CF\perp AB\\BE\perp AC\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\widehat{AFC}=90^0\\\widehat{AEB}=90^0\\\widehat{ADC}=90^0\end{cases}}\)

Xét tứ giác AEHF có: 

\(\widehat{AEH}+\widehat{AFH}=180^0\)mà 2 góc này ở vị trí đối trong tứ giác AEHF

\(\Rightarrow AEHF\)nội tiếp ( dhnb )

+)  Xét tứ giác ACDF có: 

\(\widehat{AFC}=\widehat{ADC}=90^0\)

mà 2 đỉnh F,D cùng nhìn cạnh AC dưới 1 góc vuông

\(\Rightarrow ACDF\) nội tiếp

b)  Ta có: \(\widehat{BAC}=\widehat{BVC}\left(=\frac{1}{2}sđ\widebat{BC}\right)\)

Vì tứ giác  AEHF nội tiếp ( cmt) \(\Rightarrow\widehat{EHC}=\widehat{BAC}\left(tc\right)\)

\(\Rightarrow\widehat{BVC}=\widehat{VHC}\)

Xét tam giác HVC có \(\widehat{BVC}=\widehat{VHC}\left(cmt\right)\)

\(\Rightarrow\Delta HVC\)cân tại C

+)  Vì CE là đường cao của tam giác HVC cân tại C 

=> CE là đường trung tuyến của tam giác HVC

=> E là trung điểm của HV

Xét tam giác FHB và tam giác EHC có:

\(\hept{\begin{cases}\widehat{FHB}=\widehat{EHC}\left(đ^2\right)\\\widehat{BFH}=\widehat{HEC}=90^0\end{cases}\Rightarrow\Delta FHB~EHC\left(g-g\right)}\) (d^2 là đối đỉnh )

\(\Rightarrow\frac{FH}{HB}=\frac{EH}{HC}\)

\(\Rightarrow FH.FC=EH.HB\)

\(\Rightarrow FH.CV=\frac{HV}{2}.HB\)

\(\Rightarrow BH.HV=2FH.CV\left(đpcm\right)\)

c) Mình sẽ làm tắt nha bạn, tắt này cơ bản thôi chỉ là cm tứ giác nội tiếp í mà

Tứ giác AFDC nội tiếp \(\Rightarrow\widehat{FAD}=\widehat{FCD}\left(1\right)\)

Tứ giác EHDC nội tiếp \(\Rightarrow\widehat{HED}=\widehat{HCD}\left(2\right)\)

(1), (2) \(\Rightarrow\widehat{FAD}=\widehat{HED}\)

Tứ giác BFHD nội tiếp \(\Rightarrow\widehat{FBH}=\widehat{FDH}\left(3\right)\)

Tứ giác BAED nội tiếp \(\Rightarrow\widehat{ABE}=\widehat{ADE}\left(4\right)\)

(3) , (4) \(\Rightarrow\widehat{FDA}=\widehat{HDE}\)

Xét tam giác AFD và tam giác EHD có:

\(\widehat{FAD}=\widehat{HED}\)và \(\widehat{FDA}=\widehat{HDE}\)

\(\Rightarrow\Delta AFD~\Delta EHD\left(g-g\right)\)

\(\Rightarrow\frac{FA}{FD}=\frac{HE}{HD}\left(5\right)\)và \(\widehat{AFD}=\widehat{EHD}\)

Xét tam giác AFI và tam giác VHD có:

\(\hept{\begin{cases}\widehat{AFI}=\widehat{VHD}\left(cmt\right)\\\widehat{FAI}=\widehat{HVD}\left(=\frac{1}{2}sđ\widebat{BN}\right)\end{cases}\Rightarrow\Delta AFI~\Delta VHD\left(g-g\right)}\)

\(\Rightarrow\frac{FA}{F1}=\frac{HV}{HD}=\frac{2HE}{HD}\left(6\right)\)

(5) , (6) \(\Rightarrow\frac{FA}{FI}=\frac{2FA}{FD}\)

\(\Rightarrow FI=\frac{1}{2}FD\)

\(\Rightarrow ID=IF\left(đpcm\right)\)

7 tháng 6 2021

A B C O E F K I J H M N S T L

c) AT là đường kính của (O), dễ thấy H,K,T thẳng hàng, gọi TH cắt (O) lần nữa tại S, ta được ^ASH = 900

Ta có A,E,H,F,S cùng thuộc đường tròn đường kính AH, suy ra:

(ES,EF) = (AS,AB) = (SC,SB), (SF,SE) = (BS,BC) do đó \(\Delta\)SFE ~ \(\Delta\)SBC

Vì K,L là trung điểm của BC,EF nên \(\Delta\)SFL ~ \(\Delta\)SBK, suy ra \(\Delta\)SFB ~ \(\Delta\)SLK, (KS,KL) = (BS,BA) (1)

Lại có: \(\frac{MF}{MB}=\frac{HF}{HB}=\frac{HE}{HC}=\frac{NE}{NC}\)\(\Delta\)SEC ~ \(\Delta\)SFB, suy ra \(\Delta\)SMN ~ \(\Delta\)SBC

Tương tự như trên, ta thu được (KS,KI) = (BS,BA) (2)

Từ (1);(2) suy ra K,I,L thẳng hàng. Mặt khác K,L,J thẳng hàng vì chúng cách đều E,F.

Do vậy I,J,K thẳng hàng.

9 tháng 3

(ES,EF) là như nào

 

Vẽ đường kính CM

\(MA\perp AC\)(\(\Delta MAC\)nội tiếp)

\(BE\perp AC\)(giả thiết)

\(\Rightarrow\)\(MA//BH\) (1)

\(MB\perp BC\)(\(\Delta MBC\)nội tiếp)

\(AH\perp BC\)(giả thiết)

\(\Rightarrow\)\(MB//AH\)(2)

Từ (1)(2):

\(\Rightarrow\)\(MAHB\)là hình bình hành.

\(\Rightarrow\)\(AH=BM\)

Do\(\widehat{BAC}=60^0\)

\(\Rightarrow BC=R\sqrt{3}\)

Áp dụng địn lí Pytago vào \(\Delta BMC\)

\(BM^2+BC^2=MC^2\)

\(\Leftrightarrow\)\(BM^2=4R^2-3R^2\)

\(\Leftrightarrow\)\(BM^2=R^2\)

\(\Leftrightarrow\)\(BM=\sqrt{R^2}=R\)

\(\Rightarrow\)\(AH=BM=R\)

Mà \(AO=\frac{2R}{2}=R\)

\(\Rightarrow\)\(AH=AO\)

\(\Rightarrow\)\(\Delta AHO\)cân tại \(A\)(ĐPCM)