Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C N M D H I
a, xét tam giác AMB và tam giác NMC có :
BM = MC do M là trung điểm của BC (gt)
AM = NM do M là trung điểm của AN (Gt)
góc AMB = góc NMC (đối đỉnh)
=> tam giác AMB = tam giác NMC (c-g-c)
b, tam giác AMB = tam giác NMC (câu a)
=> góc ABM = góc MCN (đn)
c, tam giác AMB = tam giác NMC (câu a)
=> BA = CN (đn) (1)
xét tam giác BAH và tam giác BIH có : BH chung
góc BHA = góc BHI = 90 (gt)
HI = HA (Gt)
=> tam giác BAH = tam giác BIH (2cgv)
=> BI = BA (đn) (2)
(1)(2) => BI = CN
a) Xét ∆ABM và ∆CMN ta có :
AM = MN
BM = MC
AMB = CMN ( đối đỉnh)
=> ∆ABM = ∆CMN (c.g.c)
b) Vì ∆ABM = ∆CMN (cmt)
=> ABM = NCM
Mà 2 góc này ở vị trí so le trong
=> AB //NC
=> DB // NC
Ta có : BDC + DCN = 180° ( kề bù)
=> DCN = 90°
c) Xét ∆ vuông ABH và ∆vuông IHB ta có :
AH = HI
BH chung
=> ∆ABH = ∆IHB ( 2 cạnh góc vuông)
=> BA = BI
Mà AB = CN (cmt)
=> BI = CN ( cùng bằng BA)
a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)
Bạn tự vẽ hình nha
a.
Xét tam giác ABM và tam giác NCM có:
AM = NM (M là trung điểm của AN)
AMB = NMC (2 góc đối đỉnh)
MB = MC (M là trung điểm của BC)
=> Tam giác ABM = Tam giác NCM (c.g.c)
b.
ABM = NCM (tam giác ABM = tam giác NCM)
mà 2 góc này ở vị trí so le trong
=> AB // CN
mà AB _I_ CD
=> CD _I_ CN
=> DCN = 900
Chúc bạn học tốt
a) Xét 2 \(\Delta\) \(AMB\) và \(NMC\) có:
\(AM=NM\) (vì M là trung điểm của \(AN\))
\(\widehat{AMB}=\widehat{NMC}\) (vì 2 góc đối đỉnh)
\(MB=MC\) (vì M là trung điểm của \(BC\))
=> \(\Delta AMB=\Delta NMC\left(c-g-c\right).\)
b) Theo câu a) ta có \(\Delta AMB=\Delta NMC.\)
=> \(AB=CN\) (2 cạnh tương ứng).
Xét 2 \(\Delta\) vuông \(ABH\) và \(IBH\) có:
\(\widehat{AHB}=\widehat{IHB}=90^0\)
\(AH=IH\left(gt\right)\)
Cạnh BH chung
=> \(\Delta ABH=\Delta IBH\) (cạnh huyền - cạnh góc vuông).
=> \(AB=BI\) (2 cạnh tương ứng).
Mà \(AB=CN\left(cmt\right)\)
=> \(BI=CN\left(đpcm\right).\)
Chúc bạn học tốt!
a: Xét ΔAMB và ΔNMC có
MA=MN
góc AMB=góc NMC
MB=MC
Do đó: ΔAMB=ΔNMC
b: Xét ΔBAI có
BH vừa là đường cao, vừa là trung tuyến
nên ΔBAI cân tại B
=>BA=BI=CN