K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2016

Bạn nên nhớ những công thức sau đây:

\(IB=\frac{AB+BC-CA}{2},IC=\frac{CA+BC-AB}{2}\)

Theo đề bài ta có: \(AB.AC=\frac{\left(BC+CA-AB\right)\left(BC+AB-AC\right)}{2}=\frac{BC^2-\left(AB-AC\right)^2}{2}\).

Khai triển ta có: \(BC^2-AB^2+2AB.AC-AC^2=2AB.AC\) hay \(BC^2=AB^2+AC^2\).

Vậy tam giác \(ABC\) vuông tại \(A\)

20 tháng 12 2016

De thi hk tỉnh. Mình. Lúc làm thì minh cho A =90 độ, trước. Nhưng lập luận khong chặt che, về hoi cach trực tiếp hơn 

16 tháng 12 2019

Câu hỏi của Vương Trương Quang - Toán lớp 9 - Học toán với OnlineMath

16 tháng 12 2019

Câu hỏi của Vương Trương Quang - Toán lớp 9 - Học toán với OnlineMath

16 tháng 12 2019

Câu hỏi của Vương Trương Quang - Toán lớp 9 - Học toán với OnlineMath

16 tháng 12 2019

A B C O M I N a b c c a b

Gọi M; N lần lượt là tiếp điểm của AB; AC  với đường tròn.

=> BI = BM = b; AM = AN = a; CN = CI = c

Theo bài ra :

AB . AC = 2IB. IC 

=> (AM + MB ) ( AN + NC) = 2IB . IC

=> ( a + b ) ( a + c ) = 2 bc

<=> a\(^2\)+ ab + ac + bc = 2bc 

<=> a\(^2\)+ ab + ac = bc

<=> 2a\(^2\)+2ab + 2ac = 2bc

<=> ( a\(^2\)+ 2ab + b\(^2\)) + ( a\(^2\)+ 2ac + c\(^2\)) = b\(^2\)+ 2bc + c\(^2\)

<=> (a + b ) \(^2\)+ ( a+ c )\(^2\)= ( b + c ) \(^2\)

=> AB \(^2\)+ AC \(^2\)= BC \(^2\)

=> Tam giác ABC vuông tại A

=> ^A = 90 độ.

25 tháng 12 2022

<=> (a+2ab+b2)+(a2+2ac+c2)=(b2+2bc+c2) bước này ở đâu và làm sao để xuất hiện bvà c2  vậy ạ

12 tháng 5 2019

a, b, c HS tự làm

d, Gợi ý: G' ÎOI mà  I G ' I O = 1 3 => G' thuộc (G'; 1 3 R)