\(\overrightarrow{MA}=2\overrightarrow{MC}\) ,...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 10 2020

\(\overrightarrow{NB}=-3\overrightarrow{NM}\Rightarrow\frac{\overrightarrow{NB}}{\overrightarrow{NM}}=-3\)

\(\overrightarrow{MA}=2\overrightarrow{MC}\Rightarrow\overrightarrow{MA}=-2\overrightarrow{AC}\Rightarrow\frac{\overrightarrow{MA}}{\overrightarrow{AC}}=-2\)

Áp dụng định lý Menelaus cho tam giác BCM:

\(\frac{\overrightarrow{NB}}{\overrightarrow{NM}}.\frac{\overrightarrow{MA}}{\overrightarrow{AC}}.\frac{\overrightarrow{CP}}{\overrightarrow{PB}}=1\Leftrightarrow\left(-3\right).\left(-2\right).\frac{\overrightarrow{CP}}{\overrightarrow{PB}}=1\)

\(\Leftrightarrow\overrightarrow{PB}=6\overrightarrow{CP}\Rightarrow\overrightarrow{PB}=-6\overrightarrow{PC}\Rightarrow k=-6\)

AH
Akai Haruma
Giáo viên
30 tháng 9 2020

Lời giải:

a) Vì $M$ trung điểm của $AB$ nên $\overrightarrow{MA}, \overrightarrow{MB}$ là 2 vecto đối nhau.

$\Rightarrow \overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0}$

$\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{IM}+\overrightarrow{MA}+\overrightarrow{IM}+\overrightarrow{MB}=2\overrightarrow{IM}+(\overrightarrow{MA}+\overrightarrow{MB})$

$=2\overrightarrow{IM}$ (đpcm)

b)

\(\overrightarrow{IA}+2\overrightarrow{IB}=\overrightarrow{IN}+\overrightarrow{NA}+2(\overrightarrow{IN}+\overrightarrow{NB})\)

\(=3\overrightarrow{IN}+\overrightarrow{NA}+2\overrightarrow{NB}=3\overrightarrow{IN}-\overrightarrow{NB}+2\overrightarrow{NB}\)

\(=3\overrightarrow{IN}+\overrightarrow{NB}\) (đề không đúng???)

c)

\(\overrightarrow{IA}-3\overrightarrow{IB}=\overrightarrow{IP}+\overrightarrow{PA}-3(\overrightarrow{IP}+\overrightarrow{PB})=-2\overrightarrow{IP}+(\overrightarrow{PA}-3\overrightarrow{PB})\)

\(=-2\overrightarrow{IP}+(3\overrightarrow{PB}-3\overrightarrow{PB})=-2\overrightarrow{IP}\)

17 tháng 8 2020

Lời giải:

a) Vì $M$ trung điểm của $AB$ nên $\overrightarrow{MA}, \overrightarrow{MB}$ là 2 vecto đối nhau.

$\Rightarrow \overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0}$

$\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{IM}+\overrightarrow{MA}+\overrightarrow{IM}+\overrightarrow{MB}=2\overrightarrow{IM}+(\overrightarrow{MA}+\overrightarrow{MB})$

$=2\overrightarrow{IM}$ (đpcm)

b)

\(\overrightarrow{IA}+2\overrightarrow{IB}=\overrightarrow{IN}+\overrightarrow{NA}+2(\overrightarrow{IN}+\overrightarrow{NB})\)

\(=3\overrightarrow{IN}+\overrightarrow{NA}+2\overrightarrow{NB}=3\overrightarrow{IN}-\overrightarrow{NB}+2\overrightarrow{NB}\)

\(=3\overrightarrow{IN}+\overrightarrow{NB}\) (đề không đúng???)

c)

\(\overrightarrow{IA}-3\overrightarrow{IB}=\overrightarrow{IP}+\overrightarrow{PA}-3(\overrightarrow{IP}+\overrightarrow{PB})=-2\overrightarrow{IP}+(\overrightarrow{PA}-3\overrightarrow{PB})\)

\(=-2\overrightarrow{IP}+(3\overrightarrow{PB}-3\overrightarrow{PB})=-2\overrightarrow{IP}\)

20 tháng 10 2020

a) Từ điểm I trên AB thỏa mãn IA = 1/2 IB ta vẽ đường song song với BC. Điểm N nằm trên đó.

B) tương tự câu a)