Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Kẻ HN//CM
Xét ΔAMC có HN//CM
nên AH/AM=AN/AC=1/3=HN/CM
=>AH=1/3AM=1/3*2/3*AB=2/9*AB
AH=2/9AB
=>BH/AB=7/9
mà BM/AB=1/3
nên BM/BH=1/3:7/9=1/3*9/7=3/7
Xét ΔBHN có MK//HN
nên MK/HN=BM/BH=3/7
=>MK=3/7HN=3/7*1/3*CM=1/7*CM
=>CK/CM=6/7
S AMC=2/3*S ABC
=>S AKC=6/7*2/3*S ABC=4/7*S ABC
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có MP là đường trung bình tam giác BCN, suy ra P là trung điểm NC. Mặt khác theo định lý Ta-let:
\(\frac{NA}{NP}=\frac{KA}{KM}=\frac{1}{2}\to NP=2NA\to AP=\frac{3}{5}AC\to S_{APM}=\frac{3}{5}S_{AMC}=\frac{3}{5}\cdot30\left(cm^2\right)=18\left(cm^2\right).\)
Mặt khác \(KN\parallel MP,\frac{AN}{AP}=\frac{1}{3}\to\Delta AKN\sim\Delta AMP\) với tỉ số đồng dạng \(k=\frac{1}{3}.\)
Do đó \(\frac{S_{AKN}}{S_{AMP}}=\frac{1}{9}\to S_{AKN}=\frac{1}{9}\cdot18\left(cm^2\right)=2\left(cm^2\right).\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Áp dụng: Diện tích của một tam giác bằng nửa tích của 2 cạnh nhân với sin của góc nhọn tạo bởi các đường thẳng chứa 2 cạnh ấy
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét (O) có
ΔAEB nội tiếp
AB là đường kính
Do đó: ΔAEB vuông tại E
Xét ΔABC có
BN,CM,AE là các đường cao
BN cắt CM tại H
Do đó: A,H,E thằng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Ta có góc BOC = 120\(^0\)
\(\Rightarrow\) góc BAC = 60\(^0\). Vì AB và AC là tiếp tuyến nên AB = AC.
Do đó, tam giác ABC là tam giác đều.
Vì tam giác ABC đều nên ta có BC = AB = AC = 2R.
b. Ta có góc BOC = 120\(^0\), suy ra góc BAC = 60\(^0\).
Gọi H là hình chiếu của O trên BC. Khi đó OH = R.cos60\(^0\) = R/2.
Gọi x = BM, y = MC. Ta có:
+ BH = R-X
+ CH = R-Y
+ AH = AB - BH = R + x
+ AH = AC - CH = R + y
Áp dụng định lý Ptolemy cho tứ giác a. Ta có góc BOC = 120\(^0\), suy ra góc BAC = 60\(^0\). Vì AB và AC là tiếp tuyến nên AB = AC. Do đó, tam giác ABC là tam giác đều.
Vì tam giác ABC đều nên ta có BC = AB = AC = 2R.
Áp dụng định lý Ptolemy cho tứ giác ABOM và ACOM, ta có:
AB . OM + AC . OM = AO . BC
R . (x + y) + R . (x + y + BC) = AO . BC
R . (2x + 2y + BC) = AO . BC
Do đó, ta có: BC = (2R . x)/(AO - 2R) = (2R . y)/(AO - 2R)
Gọi T là điểm cắt của tiếp tuyến tại M với BC. Ta có:
+ OT vuông góc với BC
+ MT là đường trung bình của tam giác OBC
Do đó, ta có: MT = (1/2)BC = R . x/(AO - 2R) = R . y/(AO - 2R)
Gọi G là trọng tâm của tam giác AEF. Ta có:
+ OG song song với EF và bằng một nửa đường cao AH của tam giác ABC
+ AG = (2/3)AH
Do đó, ta có: OG = (1/3)AO và EF = 20G = (2/3)AO/3
Áp dụng định lý Ptolemy cho tứ giác OFCI, ta có:
OF . IC + OI . FC = OC . FI
R . (y + EF) + R . x = R . (y+x)
R . y + (2/3)AO/3 = R . x
Do đó, ta có: R.y/(AO-2R) + (2/3)AO/(3R) = R.x/(AO-2R)
Tổng quát hóa, ta có: nếu M thuộc cung BC nhỏ thì chu vi tam giác AEF không đổi.
Câu c. mik ko bt làm
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Dễ thấy tứ giác AMNC nội tiếp đường tròn đường kính MN.
b) Ta có tứ giác AMNC nội tiếp nên \(\angle BCM=\angle BAN\). Suy ra \(\Delta BCM\sim\Delta BAN\left(g.g\right)\).
Từ đó \(\dfrac{BM}{BN}=\dfrac{CM}{AN}\).
c) Gọi P' là trung điểm của MC.
Khi đó P' là tâm của đường tròn ngoại tiếp tứ giác AMNC.
Ta có \(\widehat{AP'N}=2\widehat{ACN}=180^o-2\widehat{ABC}=180^o-\widehat{MON}\). Suy ra tứ giác AONP' nội tiếp.
Từ đó \(P'\equiv P\). Ta có \(OP=OP'=\dfrac{BC}{2}\) (đường trung bình trong tam giác BMC) không đổi khi M di động trên cạnh AB.