Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C N N G H M K
GT, Kl bạn tự viết nha!
Chứng minh
Xét \(\Delta ABC\)có:
BM là đường trung tuyến ( M là trung điểm AC)
CN là đường trung tuyến ( N là trung điểm AB)
Mà G là giao điểm của BM và CN
Suy ra: G là trọng tâm của \(\Delta ABC\)
\(\Rightarrow\)+) \(BG=\frac{2}{3}BM\) ( t/c trọng tâm) \(\Rightarrow GM=\frac{1}{3}BM\) mà \(GM=\frac{1}{2}HG\)\(\Rightarrow HG=\frac{2}{3}BM\)
\(\Rightarrow BG=HG\)
+) \(CG=\frac{2}{3}CN\) ( t/c trọng tâm ), tương tự như trên ta cm được CG = GK (cm như BG =HG)
Xét \(\Delta KGB\) và \(\Delta CGH\) có:
BG = HG (cmt)
CG = GK (cmt)
\(\widehat{KGB}=\widehat{CGH}\) (2 góc đối đỉnh)
Suy ra: \(\Delta KGB=\Delta CGH\) (c.g.c) (đpcm)
~ Học tốt ~
Làm hơi lâu đó nhaa, nhớ t.i.c.k nếu đúng!
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABC có
CN,BM là trung tuyến
CN cắt BM tại G
=>G là trọng tâm
=>CG=2GN=GK
b: G là trọng tâm của ΔABC
=>BG=2GM=GI
Xét tứ giác BCIK có
G là trung điểm chung của BI và CK
=>BCIK là hình bình hành
=>IK//BC và IK=BC
NM là đg tb của ΔABC nên NM//BC=>ΔGBC∼ΔGMN và nếu kẻ đg thẳng ⊥BC tại B và⊥BC tại c và nối dài MN thì hai đoạn = nhau
tương tự thì ΔGMN∼ΔGKH =>GH//NM
r làm đi