\(ABC\), \(M\) là trung điểm của cạnh 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2024

Ta có: \(EF//AM\left(gt\right)\)

\(\Rightarrow\widehat{FEC}=\widehat{AMC}\) (đồng vị) 

Xét hai tam giác FEC và AMC có:

\(\widehat{FCE}\) chung 

\(\widehat{FEC}=\widehat{AMC}\) (cmt) 

\(\Rightarrow\Delta FEC\sim\Delta AMC\) (g.g)  

\(\Rightarrow\dfrac{EF}{AM}=\dfrac{CE}{CM}\Rightarrow\dfrac{CM}{AM}=\dfrac{CE}{EF}\) (1) 

Chứng minh tương tự ta có: \(\Delta BEG\sim\Delta BMA\left(g.g\right)\) 

\(\Rightarrow\dfrac{EG}{AM}=\dfrac{BE}{BM}\Rightarrow\dfrac{CM}{AM}=\dfrac{BE}{EG}\) (vì \(CM=BM\)) (2) 

Từ (1) và (2) ta có: 

\(\dfrac{CE}{EF}=\dfrac{BE}{EG}\Rightarrow EG\cdot CE=EF\cdot BE\)

\(\Rightarrow EG\cdot\left(BC-BE\right)=EF\cdot BE\)

\(\Rightarrow EG\cdot BC-EG\cdot BE=EF\cdot BE\)

\(\Rightarrow EF\cdot BE+EG\cdot BE=EG\cdot BC\)  

\(\Rightarrow EF+EG=\dfrac{EG\cdot BC}{BE}\left(3\right)\) 

Từ (2) ta có: \(\dfrac{EG}{AM}=\dfrac{BE}{BM}\) 

\(\Rightarrow BM\cdot EG=BE\cdot AM\Rightarrow\dfrac{1}{2}BC\cdot EG=BE\cdot AM\) 

\(\Rightarrow EG\cdot BC=2AM\cdot BE\)

\(\Rightarrow2AM=\dfrac{EG\cdot BC}{BE}\left(4\right)\)

Từ (3) và (4) \(\Rightarrow EF+EG=2AM\) (đpcm) 

22 tháng 10 2019

.

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

28 tháng 8 2017

Thánh Ca ơi đây là toán lớp 9 mình nhờ bạn giải toán lớp 9 chứ ko phải là mấy bài toán lớp 3, 4 đâu nha bạn 

bạn ko giải đc thì thôi đừng bình luận để mình mong chờ 

15 tháng 9 2016

Bài 2.  A B C M D E F

Áp dụng định lí Pytago ta có : 

\(AM^2=AF^2+FM^2=AE^2+ME^2\)

\(BM^2=BD^2+MD^2=MF^2+BF^2\)

\(MC^2=ME^2+EC^2=MD^2+DC^2\)

\(\Rightarrow AF^2+FM^2+BD^2+MD^2+ME^2+EC^2=AE^2+ME^2+MF^2+BF^2+MD^2+DC^2\)

\(\Rightarrow BD^2+CE^2+AF^2=DC^2+EA^2+FB^2\)

 

15 tháng 9 2016

bn giúp mk bài 1 đc k Ngọc

5 tháng 7 2021

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)có :

\(C\ge\frac{4}{1+\left(a+b\right)^2}\ge\frac{4}{1+1}=2\)

Dấu = khi a=b=1/2