K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMAB và ΔMCD có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)

MB=MD

Do đo: ΔMAB=ΔMCD

b: \(\Leftrightarrow2\cdot BM< AB+BC\)

\(\Leftrightarrow CD+BC>BD\)(luôn đúng)

16 tháng 7 2021

Câu C bạn cm AFCE là hình chữ nhật , FE là đường chéo => E,F,M thẳng hàng vì 2 đường chéo hình chữ nhật đi qua trung điểm của mỗi đường.

 

a: Xét ΔABM và ΔACM có 

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

b: Xét ΔMBA và ΔMCD có 

MB=MC

\(\widehat{AMB}=\widehat{DMC}\)

MA=MD

Do đó: ΔMBA=ΔMCD

a: Xét ΔABM và ΔCDM có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)

MB=MD

DO đó; ΔABM=ΔCDM

b: Xét tứ giác ABCD có 

M là trung điểm của AC
M là trung điểm của BD

Do đó:ABCD là hình bình hành

Suy ra: AB//CD

19 tháng 11 2016

Ta có hình vẽ:

a/ Xét tam giác AMD và tam giác CMB có

AM = MC (GT)

\(\widehat{AMD}\)=\(\widehat{CMB}\) (đối đỉnh)

MD = MB (GT)

Vậy tam giác AMD = tam giác CMB (c.g.c)

b/ Ta có: tam giác AMB = tam giác CMB (câu a)

=> \(\widehat{BCM}\)= \(\widehat{MAD}\)

Mà góc BCM; MAD ở vị trí so le trong

=> AD // BC (đpcm)

c/ Xét tam giác ABC và tam giác CDA có:

AC: cạnh chung

AD = BC (vì tam giác AMD = tam giác CMB)

\(\widehat{BCM}\)=\(\widehat{MAD}\)

Vậy tam giác ABC = tam giác CDA (c.g.c)

d/ Ta có: tam giác ABC = tam giác CDA (câu c)

=> \(\widehat{BAC}\) =\(\widehat{ACD}\)

Mà góc BAC; ACD ở vị trí so le trong

=> AB // CD (đpcm)

20 tháng 12 2016

cần giải bài này nữa ko Pii Nguyễn

20 tháng 12 2016

giải bài mình trước đi mà bạn