Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Xét tứ giác ABEC có
M là trung điểm của BC
M là trung điểm của AE
DO đó: ABEC là hình bình hành
Suy ra: AB//EC

a) △ABM và △ECM có:
\(MB=MC\\ \widehat{AMB}=\widehat{CME}\\ AM=ME\)
\(\Rightarrow\text{△ABM = △ECM (c.g.c)}\)
b) \(\text{△ABM = △ECM}\\ \Rightarrow\widehat{ABM}=\widehat{ECM}\)
Mà 2 góc ở vị trí so le trong
\(\Rightarrow\) AB // CE (dấu hiệu nhận biết)
c) \(\text{△ACM và △EBM có:}\\ AM=EM\\ \widehat{AMC}=\widehat{BME}\\ CM=BM\\ \Rightarrow\text{△ACM = △EBM (c.g.c)}\\ \Rightarrow\widehat{CAM}=\widehat{BEM}\\ \text{△AIM và △EKM có:}\\ AI=EK\\ \widehat{IAM}=\widehat{KEM}\\ AM=EM\\ \Rightarrow\text{△AIM = △EKM (c.g.c)}\\ \Rightarrow MI=MK\)
a) Xét ΔABM và ΔECM có
MA=ME(gt)
\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔABM=ΔECM(c-g-c)

a: Xét ΔABM và ΔECM có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)
MB=MC
Do đó: ΔABM=ΔECM
b: Xét tứ giác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó:ABEC là hình bình hành
Suy ra: AB//CE
c: Xét tứ giác AIEK có
AI//EK
AI=EK
Do đó: AIEK là hình bình hành
Suy ra: Hai đường chéo AE và IK cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của AE
nên M là trung điểm của IK
hay MI=MK

a ) Xét \(\Delta AMC\) và \(\Delta EMB\) có :
\(AM=EM\left(gt\right)\)
\(\widehat{AMC}=\widehat{EMB}\left(dd\right)\)
\(CM=BM\left(gt\right)\)
Do đó : \(\Delta AMC=\Delta EMB\left(c.g.c\right)\)
\(\Rightarrow\widehat{CAM}=\widehat{BEM}\)
\(\Leftrightarrow AC\)//\(BE\)
b ) Xét \(\Delta AMI\) và \(\Delta EMK\) có :
\(AM=EM\left(gt\right)\)
\(\widehat{MAI}=\widehat{MEK}\left(cmt\right)\)
\(AI=EK\left(gt\right)\)
Do đó : \(\Delta AMI=\Delta AMK\left(c.g.c\right)\)
\(\Rightarrow\begin{cases}\widehat{AMI}=\widehat{EMK}\\MI=MK\end{cases}\)
\(\Rightarrow\begin{cases}I,M,Kthanghang\\MI=MK\end{cases}\)
\(\Rightarrow M\) là trung điểm \(IK\)

a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)
Xét tứ giác KEIA có
KE//AI
KE=AI
Do đó: KEIA là hình bình hành
=>KI và EA cắt nhau tại trung điểm của mỗi đường
mà MI=MK