K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2015

Do AC=BE(gt)

AMC=BME(đối đỉnh)

BM=MC(M là trung điểm BC)

Suy ra tam giác AMC=tam giác BME(c-g-c)

ACM=MBE và hai góc này ở vị trí so le trong nên AC // BE

4 tháng 12 2015

a/ Xét tam giác AMC và tam giác EMB có

AM=ME(gt)

góc AMC=góc EMB(đối đỉnh)

BM=MC( M là trung điểm của BC) 

Vậy tam giác AMC = tam giác EMB(c-g-c)

4 tháng 11 2016
a)AC=EB và AC//BE
em chứng minh tam giác AMC = tam giác EMB (c.g.c)
=> AC = EB và góc CAM = góc BEM mà 2 góc này ở vị trí so le trong nên AC//BE
b) Chứng minh ba điểm I,M,K thẳng hàng.
em chứng minh IC = BK, góc ACM = góc EBM( suy ra từ câu a)
khi đó tam giác IMC = tam giác KMB (c.g.c)
=> góc IMC = góc KMB
khi đó góc IMK = 180 độ
I, M, K thẳng hàng
16 tháng 11 2016

Má sao ko ai tick vậy

17 tháng 12 2017

A B C M E K I Câu trả lời mình gửi sau:

31 tháng 10 2021

k biết

 

a) Xét ΔAMB và ΔAMC có

AB=AC(gt)

MB=MC(M là trung điểm của BC)

AM chung

Do đó: ΔAMB=ΔAMC(c-c-c)

b) Sửa đề: AM=MD

Xét ΔAMC và ΔDMB có 

AM=DM(gt)

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB(M là trung điểm của BC)

Do đó: ΔAMC=ΔDMB(c-g-c)

⇒AC=DB(Hai cạnh tương ứng)

c) Ta có: ΔAMC=ΔDMB(cmt)

nên \(\widehat{ACM}=\widehat{DBM}\)(hai góc tương ứng)

mà \(\widehat{ACM}\) và \(\widehat{DBM}\) là hai góc ở vị trí so le trong

nên AC//BD(Dấu hiệu nhận biết hai đường thẳng song song)

14 tháng 1 2021

o

6 tháng 3 2020

A B C M E

a) CMR AC // BE

xét tam giacs AMC và tam giác EMB

có AM = ME (gt)

     BM = MC (M trung điểm BC)

     \(\widehat{AMC}=\widehat{EMB}\left(dd\right)\)

=> tam giác AMC = tam giác EMB (cgc)

=> \(\widehat{MBE}=\widehat{MCB}\)mà chúng ở vị trí so le trong => AC//BE

6 tháng 3 2020

b) bạn tự thêm điểm I và K vào hình vẽ nhé, mình lười :))

ta có I thuộc AC, K thuộc BE nên

IC = AC - AI và BK = BE - KE

mà AC = BE (cmt), AI = KE (gt)

=> IC = BK 

xét tam giác IMC và tam giác KMB

có: BK = IC (cmt)

BM = MC (cmt)

góc MBK = góc ICM (AC//BE)

=> tam giác IMC = tam giác KMB (cgc) 

=> góc IMC = góc KMB

khi đó góc IMK = 180 độ

I, M, K thẳng hàng