K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2018

Gọi E là trung điểm BD
=> DE = EB (1)
Tam giác DBC có: E là trung điểm BD (theo cách vẽ)
M là trung điểm BC (gt)
=> EM là đường trung bình của tam giác DBC
=> EM // CD (t/c đường tb của tam giác)
Tam giác AEM có: I là trung điểm AM (gt)
DI // EM (vì EM // CD mà I thuộc CD)
=> D là trung điểm AE
=> AD = DE (2) 
Từ (1),(2) => AD = DE = EB
Mà BD = DE + EB
BD = 2 DE (vì DE = EB)
=> BD= 2 AD (vì AD = DE) hay AD=1/2 BD
=> đpcm

13 tháng 12 2018

CÁCH 2 nek!!

Từ điểm M kẻ đường thẳng Mx song song với DC cắt AB tại H 
xét tam giác AHM có : DI // HM (DC // Mx) 
AI =IM (gt) 
=> DI là đường trung bình của tam giác AHM 
=> AD =DH (1) 
xét tam giác BDC có: DC // HM (DC // Mx) 
BM = MC (gt) 
=> HM là đường trung bình của tam giác BDC 
=> DH = HB (2) 
từ (1) và (2) => AD = DH = HB 
=> AD=1/2 DB hay BD = 2AD => đpcm

Bn ơi, D ở đâu z

Viết đề chính xác nhé

^^

13 tháng 12 2018

từ điểm M kẻ đường thẳng Mx song song với DC cắt AB tại H 
xét tam giác AHM có : DI // HM (DC // Mx) 
AI =IM (gt) 
=> DI là đường trung bình của tam giác AHM 
=> AD =DH (1) 
xét tam giác BDC có: DC // HM (DC // Mx) 
BM = MC (gt) 
=> HM là đường trung bình của tam giác BDC 
=> DH = HB (2) 
từ (1) và (2) => AD = DH = HB 
=> AD=1/2 DB hay BD = 2AD => đpcm

câu b chưa lm đc. SORRY

17 tháng 11 2019

Hay \(AD=\frac{1}{2}BD.\)

=> \(CD=4ID\)

Hay \(ID=\frac{1}{4}CD\left(đpcm\right).\)

Chúc bạn học tốt!

17 tháng 11 2019

mơn bn nhìu

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: a) DC= \(\frac{1}{2}\)AB và DC // ACb) AD=MCc) MN // BC và MN =\(\frac{1}{2}\)BCBài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường...
Đọc tiếp

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: 

a) DC= \(\frac{1}{2}\)AB và DC // AC

b) AD=MC

c) MN // BC và MN =\(\frac{1}{2}\)BC

Bài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường thẳng BC cắt DE tại H. Chứng minh:

a) DE=BC

b) BC\(\perp\)DE tại H

c) AN = AM và AN\(\perp\)AM

Bài 3: Cho tam giác ABC có góc A > 90 độ, M là trung điểm của BC. Từ B kẻ đường thẳng song song với AC cắt đường thẳng AM tại N. Trên nửa mặt phẳng bờ AB không chứa C vẽ tia Ax \(\perp\)AB, trên Ax lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng bờ AC không chứa B vẽ tia Ay \(\perp\)AC, trên Ay lấy điểm E sao cho AE = AC. Chứng minh:

a) BN = CA

b) góc BAC + góc DAE = 180 độ 

c) AM = \(\frac{1}{2}\)DE

Nhớ vẽ hình hộ mik nha :))

 

0
6 tháng 12 2016

a) Nối C với D

Xét tam giác  AMB và tam giác DMC ta có:

AM = DM (gt)

Góc AMB = góc CMD ( 2 góc đối đỉnh)

BM = CM (gt)

=> Tam giác AMB = tam giác DMC (c.g.c)

=> AB =CD ( 2 cạnh tương ứng)

b) Ta có tam giác AMB = tam giác DMC ( từ chứng minh a)

=>Góc MAB = góc MDC ( 2 góc tương ứng)

=> AB//CD ( có 2 góc ở vị trí so le trong bằng nhau)

=> ACD + CAB = 180 độ (2 đường thẳng // => 2 góc trong cùng phía bù nhau)

       90  + CAB = 180 độ 

=>            CAB = 180 - 90 = 90 độ

c)  Xét tam giác ABC và tam giác CDA ta có:

AC cạnh chung

Góc A = góc C = 90 độ (Chứng minh b)

AB = CD ( chứng minh a)

=> Tam giác ABC = tam giác CDA (c.g.c)

=> AD = CB ( 2 cạnh tương ứng)

Mà AM = MD (giả thuyết)

=> AM = \(\frac{1}{2}\)AD = \(\frac{1}{2}\)BC

Vậy AM = \(\frac{1}{2}\)BC

2 tháng 1 2019

I Don’t Nkow😂😂😂

1,Cho tam giác ABC cân tại A . Kẻ AM vuông góc với BC tại Ma, Chứng minh tam giác ABM = tam giác ACM b, Biết AB = 20cm ; BC =  24cm . Tính MB và AMc, Kẻ MH vuông góc với AB tại H ; MK vuông góc với AC tại K Chứng minh tam giac AHK cân tại A . Tính MH2,Cho tam giác ABC vuông tại A  có AB = 3cm ; AC = 4cm . Gọi AM là đường trung tuyến của tam giác ABC , trên tia đối của tia MA lấy điểm D sao cho AM = MDa, Tính BCb,Chứng...
Đọc tiếp

1,Cho tam giác ABC cân tại A . Kẻ AM vuông góc với BC tại M

a, Chứng minh tam giác ABM = tam giác ACM 

b, Biết AB = 20cm ; BC =  24cm . Tính MB và AM

c, Kẻ MH vuông góc với AB tại H ; MK vuông góc với AC tại K 

Chứng minh tam giac AHK cân tại A . Tính MH

2,Cho tam giác ABC vuông tại A  có AB = 3cm ; AC = 4cm . Gọi AM là đường trung tuyến của tam giác ABC , trên tia đối của tia MA lấy điểm D sao cho AM = MD

a, Tính BC

b,Chứng minh AB = CD ; AB song song với CD

c,Chứng minh góc BAM > góc CAM 

d, Gọi H là trung điểm của BM , trên đường thẳng AH lấy E sao cho AH = HE , CE cắt AD tại F . Chứng minh F là trung điểm của CE

3, Chứng minh tổng sau không phải là số nguyên :

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{44^2}+\frac{1}{45^2}\)

4, Tìm x;y biết : \(\frac{x}{y}=\frac{-3}{8}\)và \(x^2-y^2=\frac{-44}{5}\)

 

0