Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N
a, xét tam giác ABM và tam giác ACM có:
AB=AC
AM chung
BM=CM
=> tam giác ABM= tam giác ACM (c.c.c)
b,
Tam giác ABM= tam giác ACM => góc BAM= góc CAM
=> AM là tia phân giác của góc BAC
c, AM là tia phân giác của góc BAC => AN là tia phân giác của góc BAC
=> A, M, N thẳng hàng
a)
Xét 2 tam giác vuông AMC và AMB có:
AM chung
BM=CM (gt)
=>\(\Delta AMC = \Delta AMB\) (hai cạnh góc vuông)
=> AC=AB (2 cạnh tương ứng)
=> Tam giác ABC cân tại A
b)
Kẻ MH vuông góc với AB (H thuộc AB)
MG vuông góc với AC (G thuộc AC)
Xét 2 tam giác vuông AHM và AGM có:
AM chung
\(\widehat {HAM} = \widehat {GAM}\) (do AM là tia phân giác của góc BAC)
=>\(\Delta AHM = \Delta AGM\) (cạnh huyền – góc nhọn)
=> HM=GM (2 cạnh tương ứng)
Xét 2 tam giác vuông BHM và CGM có:
BM=CM (giả thiết)
MH=MG(chứng minh trên)
=>\(\Delta BHM = \Delta CGM\)(cạnh huyền – cạnh góc vuông)
=>\(\widehat {HBM} = \widehat {GCM}\)(2 góc tương ứng)
=>Tam giác ABC cân tại A.
A B C M N
ta có tam giác ABC cân tại A ( AB=AC) suy ra \(\widehat{ABC}=\widehat{ACB}\)
lại có tam giác MBC cân tại M ( MB =MC ) suy ra \(\widehat{MBC}=\widehat{MCB}\)
suy ra \(\widehat{ABC}-\widehat{MBC}=\widehat{ACB}-\widehat{MCB}\)( vì tia MB nằm giữa 2 tia BA và BC , tia MC nằm giữa 2 tia CB và CA )
hay \(\widehat{ABM}=\widehat{ACM}\)
xét \(\Delta ABM\)và \(\Delta ACM\)có \(\hept{\begin{cases}AMchung\\AB=AC\left(gt\right)\\\widehat{ABM}=\widehat{ACM}\left(cmt\right)\end{cases}}\)
do đó \(\Delta ABM=\Delta ACM\left(c.g.c\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\)( 2 góc tương ứng )
mà tia AM nằm giữa 2 tia AB và AC suy ra AM là phân giác góc BAC (1)
b) xét \(\Delta ANB\)và \(\Delta ANC\)có \(\hept{\begin{cases}ANchung\\NB=NC\left(gt\right)\\AB=AC\left(gt\right)\end{cases}}\)
do đó \(\Delta ANB=\Delta ANC\left(c.c.c\right)\)
suy ra \(\widehat{BAN}=\widehat{CAN}\)( 2 góc tương ứng )
mà tia AN nằm giữa 2 tia AB và AC do đó AN là phân giác góc BAC (2)
từ (1) và (2) suy ra AM trùng AN hay A;M:N thẳng hàng
c) xét \(\Delta MNB\)và \(\Delta MNC\)có \(\hept{\begin{cases}MB=MC\left(gt\right)\\\widehat{MBN}=\widehat{MCN}\left(cmt\right)\\BN=NC\end{cases}}\)
do đó tam giác MNB = tam giác MNC (c.g.c)
do đó \(\widehat{MNB}=\widehat{MNC}\)và \(\widehat{MNB}+\widehat{MNC}=180^o\)hay \(\widehat{MNB}=\widehat{MNC}=\frac{180^o}{2}=90^o\)hay MN vuông góc với BC và BN = NC hay MN là trung trực BC
A B C M
Ta có: M là trung điểm BC => AM là đường trung tuyến
Có: MB = MC = 1/2 BC
Mà: AM = MB = MC
=> AM = 1/2 BC
=> Góc BAC vuông (Vì chỉ có trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền)