\(\dfrac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2017

câu hỏi đâu ?

21 tháng 3 2017

ben tren y cho co tu chung minh y

24 tháng 10 2017

\(\left(x-3\right)^2+\left|y^2-9\right|=0\)

\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left|y^2-9\right|\ge0\forall y\end{matrix}\right.\)

để bt = 0 \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y^2-9=0\Rightarrow y^2=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)

Vậy.....

24 tháng 10 2017

\(\left(x-3\right)^2+\left|y^2-9\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\y^2-9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\y^2=9\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=3\\y=3hoặcy=-3\end{matrix}\right.\)

28 tháng 4 2017

2n+3 + 2n+2 - 2n+1 + 2n = 2n.23 + 2n.22 - 2n.2 + 2n

= 2n.(23 + 22 - 2 + 1)

= 2n.11

27 tháng 2 2017

a) (4x2)2(-5y3)(-xy)2

= 42x4(-5)y3x2y2

=(-5.16)(x4.x2)(y3.y2)

= -80x6y5

Phần hệ số là -80

Phần biến là x6y5

Bậc của đơn thứ là 11

27 tháng 2 2017

b) (x2y)(-1/2axz)2(xyz)3

= x2y 1/4a2x2z2x3y3z3

= 1/4a2(x2x2x3)(yy3)(z2z3)

= 1/4a2x7y4z5

Phần hệ số là 1/4a2

Phần biến là x7y4z5

Bậc của đơn thức là 16

11 tháng 2 2017

\(C=\frac{5x^2+3y^2}{10x^2-3y^2}\)

\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x}{y}=\frac{3}{5}\)

Thay \(x=3;y=5\) ta có : \(\frac{5x^2+3y^2}{10x^2-3y^2}=\frac{5\cdot3^2+3\cdot5^2}{10\cdot3^2-3\cdot5^2}=8\)

Vậy \(C=8\)

12 tháng 2 2017

Thank bạn nha ! hihi

23 tháng 7 2017

sửa lại đề nè:

So sánh: 291 và 535

Ta có: 291 = (213)7 = 81927

535 = (55)7 = 31257

Vì 81927>31257

=> 291>535

23 tháng 7 2017

Tui lỡ viết lộn

5 tháng 2 2017

\(\)\(A=2^0+2^1+2^2+2^3+...+2^{2012}\\ A=1+2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2010}+2^{2011}+2^{2012}\right)\\ A=3+2^2\cdot\left(1+2+2^2\right)+2^5\cdot\left(1+2+2^2\right)+...+2^{2010}\cdot\left(1+2+2^2\right)\\ A=3+2^2\cdot\left(1+2+4\right)+2^5\cdot\left(1+2+4\right)+...+2^{2010}\cdot\left(1+2+4\right)\\ A=3+2^2\cdot7+2^5\cdot7+...+2^{2010}\cdot7\\ A=3+7\cdot\left(2^2+2^5+...+2^{2010}\right)\\ \)

15 tháng 2 2017

Cô giải rồi lên đây giải làm j nữa.