K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2017

Ta có Theo định lý talet MN//AC 

         \(\frac{AN}{AB}=\frac{CM}{BC}\left(1\right)\)

Theo định lý Talet MP//AB

        \(\frac{AP}{AC}=\frac{BM}{BC}\left(2\right)\)

\(\left(1\right)+\left(2\right):\frac{AN}{AB}+\frac{AP}{AC}=\frac{CM}{BC}+\frac{MC}{BC}\)

\(\frac{CM}{BC}+\frac{MC}{BC}=1\)

\(\Rightarrow\frac{AN}{AB}+\frac{AP}{AC}=1\)

1 tháng 7 2023

Ta có thể giải bài toán này bằng cách sử dụng công thức diện tích của hình bình hành, và áp dụng định lí hai đường cao trong tam giác để tính diện tích tam giác ABC.

Đầu tiên, ta cần tính diện tích tam giác ABC. Ta sẽ sử dụng định lí hai đường cao trong tam giác ABC để tính toán. Gọi H là hạt giác của góc A trong tam giác ABC, và gọi AH là đường cao kẻ từ A xuống BC. Ta sẽ sử dụng định lí hai đường cao trong tam giác ABC để tính diện tích của tam giác này:

$S_{ABC} = \frac{1}{2}AH \cdot BC$

Tiếp theo, ta cần tính diện tích của hình bình hành AEMK. Để làm điều này, ta sử dụng công thức diện tích của hình bình hành:

$S_{AEMK} = AE \cdot MK$

Ta có thể tính được AE và MK bằng cách sử dụng các hệ số tỉ lệ. Gọi x là độ dài BM, ta có:

$AE = \frac{AB}{BC} \cdot BM = \frac{S}{S_{ABC}} \cdot x$

$MK = \frac{MC}{BC} \cdot BM = \frac{S - SMCKS}{S_{ABC}} \cdot x$

Lưu ý rằng ta sử dụng diện tích của hình bình hành để tính các hệ số tỉ lệ này.

Cuối cùng, ta có thể tính diện tích của hình bình hành AEMK bằng cách thay các giá trị được tính toán vào công thức diện tích của hình bình hành:

$S_{AEMK} = AE \cdot MK = \frac{S}{S_{ABC}} \cdot x \cdot \frac{S - SMCKS}{S_{ABC}} \cdot x = \frac{S(S-SMCKS)}{S_{ABC}^2} \cdot x^2$

Vậy diện tích của hình bình hành AEMK là $\frac{S(S-SMCKS)}{S_{ABC}^2} \cdot x^2$.

2:

a: HM là đường trung bình của ΔEBC

=>EH=HB

KM là đường trug bình của ΔFBC

=>FK=KC

ΔAHM có EO//HM

=>AE/AH=AO/AM

ΔAKM có KM//FO

nên AF/AK=AO/AM

=>AE/AH=AF/AK

=>EF//HK

b: ΔAHM có EO//HM

=>MA/MO=HA/HE

=>MA/MO=HA/HB

ΔAKM có FO//KM

=>MA/MO=KA/KF=KA/KC

=>HA/HB=KA/KC

=>HK//BC

=>EF//BC

11 tháng 10 2017

Hình đa giác TenDaGiac1: DaGiac(B, C, 3) Hình đa giác TenDaGiac1: DaGiac(B, C, 3) Đoạn thẳng f: Đoạn thẳng [B, C] Đoạn thẳng J_1: Đoạn thẳng [C, A] Đoạn thẳng h: Đoạn thẳng [A, B] Đoạn thẳng i: Đoạn thẳng [N, M] Đoạn thẳng j: Đoạn thẳng [Q, M] Đoạn thẳng m: Đoạn thẳng [N, P] Đoạn thẳng n: Đoạn thẳng [Q, P] Đoạn thẳng p: Đoạn thẳng [A, P] Đoạn thẳng q: Đoạn thẳng [M, I] B = (0.52, -5.67) B = (0.52, -5.67) B = (0.52, -5.67) C = (19.2, -5.49) C = (19.2, -5.49) C = (19.2, -5.49) Điểm A: DaGiac(B, C, 3) Điểm A: DaGiac(B, C, 3) Điểm A: DaGiac(B, C, 3) Điểm M: Điểm trên f Điểm M: Điểm trên f Điểm M: Điểm trên f Điểm N: M đối xứng qua h Điểm N: M đối xứng qua h Điểm N: M đối xứng qua h Điểm Q: M đối xứng qua J_1 Điểm Q: M đối xứng qua J_1 Điểm Q: M đối xứng qua J_1 Điểm P: Giao điểm đường của k, l Điểm P: Giao điểm đường của k, l Điểm P: Giao điểm đường của k, l Điểm I: Giao điểm đường của h, m Điểm I: Giao điểm đường của h, m Điểm I: Giao điểm đường của h, m Điểm K: Giao điểm đường của h, i Điểm K: Giao điểm đường của h, i Điểm K: Giao điểm đường của h, i Điểm J: Giao điểm đường của J_1, m Điểm J: Giao điểm đường của J_1, m Điểm J: Giao điểm đường của J_1, m Điểm H: Giao điểm đường của J_1, j Điểm H: Giao điểm đường của J_1, j Điểm H: Giao điểm đường của J_1, j

Gọi giao điểm của NP với AB và AC lần lượt là I và J.

Gọi giao điểm của NM với BI là K; của MQ với JC là H.

Theo giả thiết ta suy ra K, H lần lượt là trung điểm của NM và MQ. Hơn nữa ta cũng có  \(NM\perp BI;MQ\perp JC\)

Do NP // MQ mà \(MQ\perp JH\) nên \(NP\perp JH\)

\(\Rightarrow\widehat{AIJ}=90^o-\widehat{BAC}=30^o\)

Vậy nên \(\widehat{NIB}=\widehat{AIJ}=30^o\) (Hai góc đối đỉnh)

\(\Rightarrow\widehat{NIK}=90^o-\widehat{NIB}=60^o\)

Xét tứ giác NPQM có NP // MQ; NM // PQ nên NPQM  là hình bình hành. 

Vậy \(\widehat{PQM}=\widehat{INM}=60^o\)

Ta có \(\widehat{BMK}=90^o-\widehat{ABC}=30^o;\widehat{NMI}=\widehat{INM}=60^o;\widehat{CMH}=90^o-\widehat{ACB}=30^o\)

nên \(\widehat{IMH}=180^o-30^o-60^o-30^o=60^o\)

Suy ra \(\widehat{IMH}=\widehat{PQH}\left(=60^o\right)\)

Xét hình thang IPQM có \(\widehat{IMH}=\widehat{PQH}\) nên nó là hình thang cân.

Ta có H là trung điểm MQ, \(JH\perp MQ;JH\perp IP\) nên I là trung điểm IP.

Xét tam giác AIP có AJ là đường cao đồng thời trung tuyến nên AIP là tam giác cân tại A.

Vậy AJ cũng là phân giác hay \(\widehat{JAP}=\widehat{JAI}=60^o\)

Suy ra \(\widehat{JAP}=\widehat{ACB}\left(=60^o\right)\)

Mà chúng lại ở vị trí so le trong nên AP // BC.

21 tháng 4 2019

a) MN // BC. Áp dụng định lí Ta-let, ta có :

\(\frac{BM}{AB}=\frac{CN}{AC}\)hay \(\frac{2}{8}=\frac{CN}{10}\)\(\Rightarrow CN=2,5\)

b) MN // BP ; NP // BM nên tứ giác MNPB là hình bình hành

\(\Rightarrow\Delta BMN=\Delta NPB\left(c.g.c\right)\)hay \(\Delta BMN\approx\Delta NPB\)

c) BM = 2 ; AB = 8 nên AM = 6

MNPB là hình bình hành nên NP = BM

Xét \(\Delta NPC\)và \(\Delta AMN\)có : 

\(\widehat{PNC}=\widehat{MAN}\left(dv\right);\widehat{NPC}=\widehat{AMN}\left(=\widehat{ABC}\right)\)

\(\Rightarrow\)\(\Delta NPC\)\(\approx\)\(\Delta AMN\)( g.g )

\(\Rightarrow\)\(\frac{S_{NPC}}{S_{AMN}}=\left(\frac{NP}{AM}\right)^2=\left(\frac{BM}{AM}\right)^2=\left(\frac{2}{6}\right)^2=\frac{1}{9}\)

7 tháng 1 2017

Chứng minh định lí Thales thì dùng diện tích nha bạn.

7 tháng 1 2017


A B C M N H K

Cụ thể như sau:

Vẽ \(MH,NK\) vuông góc \(BC\) thì thấy ngay \(S\left(BMC\right)=S\left(BNC\right)\) (\(S\) là diện tích hình)

Suy ra \(S\left(AMC\right)=S\left(ANB\right)\) hay \(\frac{S\left(AMC\right)}{S\left(ABC\right)}=\frac{S\left(ANB\right)}{S\left(ACB\right)}\), nghĩa là có câu a.

Mà có câu a thì có câu b