Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Đặt \(S_{AOB}=c^2;S_{BOC}=a^2;S_{COA}=b^2\Rightarrow S_{ABC}=a^2+b^2+c^2\)
Ta có \(\frac{AM}{OM}=\frac{S_{ABC}}{S_{BOC}}=\frac{a^2+b^2+c^2}{a^2}=1+\frac{b^2+c^2}{a^2}\)
Vậy thì \(\frac{OA}{OM}=\frac{AM}{OM}-1=\frac{b^2+c^2}{a^2}\Rightarrow\sqrt{\frac{OA}{OM}}=\sqrt{\frac{b^2+c^2}{a^2}}\ge\frac{1}{\sqrt{2}}\left(\frac{b}{a}+\frac{a}{b}\right)\)
Tương tự, ta có: \(\sqrt{\frac{OA}{OM}}+\sqrt{\frac{OB}{ON}}+\sqrt{\frac{OC}{OP}}\ge\frac{1}{\sqrt{2}}\left(\frac{a}{b}+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}\right)\ge\frac{1}{\sqrt{2}}.6=3\sqrt{2}\)
Đặt \(am^3=bn^3=cp^3=k\)
Ta có \(\sqrt[3]{k}=\sqrt[3]{a}m=\sqrt[3]{b}n=\sqrt[3]{c}p=\frac{\sqrt[3]{a}}{\frac{1}{m}}=\frac{\sqrt[3]{b}}{\frac{1}{n}}=\frac{\sqrt[3]{c}}{\frac{1}{p}}\)
\(=\frac{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}{\frac{1}{m}+\frac{1}{n}+\frac{1}{p}}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\) \(\left(TCDTSBN\right)\)\(\left(1\right)\)
Ta cũng có \(k=\frac{am^2}{\frac{1}{m}}=\frac{bn^2}{\frac{1}{n}}=\frac{cp^2}{\frac{1}{p}}=\frac{am^2+bn^2+cp^2}{\frac{1}{m}+\frac{1}{n}+\frac{1}{p}}=am^2+bn^2+cp^2\) \(\left(TCDTSBN\right)\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{am^2+bn^2+cp^2}=\sqrt[3]{k}\)
cách khác nhé:
Đặt: \(am^3=bn^3=cp^3=k^3\)
\(\Rightarrow\)\(a=\frac{k^3}{m^3};\)\(b=\frac{k^3}{n^3};\)\(c=\frac{k^3}{p^3}\)
Ta có:
\(VT=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)
\(=\sqrt[3]{\frac{k^3}{m^3}}+\sqrt[3]{\frac{k^3}{n^3}}+\sqrt[3]{\frac{k^3}{p^3}}\)
\(=\frac{k}{m}+\frac{k}{n}+\frac{k}{p}=k\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)=k\) (do 1/m + 1/n + 1/p = 1)
\(VP=\sqrt[3]{am^2+bn^2+cp^2}\)
\(=\sqrt[3]{\frac{k^3}{m^3}.m^2+\frac{k^3}{n^3}.n^2+\frac{k^3}{p^3}.p^2}\)
\(=\sqrt[3]{k^3\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)}=\sqrt[3]{k^3}=k\) (do 1/m + 1/n + 1/p = 1)
suy ra: \(VT=VP=k\) (đpcm)
=>\(am^3=bn^3=cp^3=\frac{am^3}{m}+\frac{bn^3}{n}+\frac{cp^3}{p}\)
=>\(am^3=bn^3=cp^3=am^2+bn^2+cp^2\)
\(\sqrt[3]{am^2+bn^2+cp^2}=m\sqrt[3]{a}=n\sqrt[3]{b}=p\sqrt[3]{c}\)
=>\(\sqrt[3]{am^2+bn^2+cp^2}.1=m\sqrt[3]{a}.\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)=\frac{m\sqrt[3]{a}}{m}+\frac{n\sqrt[3]{b}}{n}+\frac{p\sqrt[3]{c}}{p}\)
\(\sqrt[3]{am^2+bn^2+cp^2}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)