K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2017

a. MH//AB và K thuộc AB => MH//AK

    MK//AC và H thuộc AC => MK//AH

=> AKMH là hình bình hành.

b. AKMH là HCN <=> góc KAH=90độ <=> góc BAC = 90độ

   AKMH là hinh thoi <=> AM là phân giác góc BAC

 AKMH là hình vuông <=> AM là phân giác tam giác vuông ABC tại A <=> AM=MB=MC <=> tam giác AMB và AMC cân tại M 

<=> góc ABM=góc BAM, góc MAC=góc MCA. MÀ góc MAB=góc MAC (do AM là phân giác góc A)

<=> góc ABC=góc ACB

<=> TAm giác ABC vuông cân tại A

Vậy TAm giác ABC vuông cân tại A thì AKMH là HV

25 tháng 7 2017

Có ai giúp mik k

17 tháng 11 2023

a: Xét tứ giác AKMH có

\(\widehat{AKM}=\widehat{AHM}=\widehat{HAK}=90^0\)

=>AKMH là hình chữ nhật

b: Xét ΔABC có

M là trung điểm của BC

MK//AC

Do đó: K là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

MH//AB

Do đó: H là trung điểm của AC

Xét ΔABC có

M,K lần lượt là trung điểm của BC,BA

=>MK là đường trung bình cuả ΔABC

=>MK//AC và MK=AC/2

MK=AC/2

MK=MI/2

Do đó: AC=MI

Xét tứ giác ACMI có

MI//AC

MI=AC

Do đó: ACMI là hình bình hành

=>AM cắt CI tại trung điểm của mỗi đường

mà E là trung điểm của AM

nên E là trung điểm của CI

=>E,C,I thẳng hàng

c: Hình chữ nhật AKMH trở thành hình vuông khi AK=AH

mà \(AK=\dfrac{AB}{2}\) và \(AH=\dfrac{AC}{2}\)

nên AB=AC

2 tháng 5 2020

c) Giả thuyết: tứ giác ANMP là hình chữ nhật thì hình bình hành ANMP vuông tại A

=> \(\Delta ABC\)vuông tại A

Vậy: DK để tứ giác ANMP là hình chữ nhật thì \(\Delta ABC\)phải vuông tại A

2 tháng 5 2020

d) Để tứ giác ANMP là hình vuông thì:

     + Tứ giác ANMP phải là hình thoi

     + Tứ giác ANMP có 1 góc vuông

(Dựa vào DHNB thứ 4: Hình thoi có một góc vuông là hình vuông)

Do đó: Để tứ giác ANMP là hình vuông thì: M phải là giao điểm của phân giác góc A và cạnh BC; đồng thời tứ giác ANMP có một góc vuông tại A(kết hợp kết quả câu b và c)

Hok tốt ~

a: Xét tứ giác AKMH có 

\(\widehat{AKM}=\widehat{AHM}=\widehat{HAK}=90^0\)

Do đó: AKMH là hình chữ nhật

20 tháng 12 2021

a: Xét tứ giác AKMH có 

\(\widehat{AKM}=\widehat{AHM}=\widehat{HAK}=90^0\)

Do đó: AKMH là hình chữ nhật

20 tháng 12 2020

a) Xét tứ giác MNCP có

MN // CP(gt)

MP // NC(gt)

\(\Rightarrow\)Tứ giác MNCP là hình bình hành

b) Xét hình bình hành MNCP là hình thoi 

\(\Leftrightarrow\)MN=MP

\(\Leftrightarrow\)Tam giác AMN= Tam giác MBP

Xét tam giác AMN và tam giác MBP có

\(\widehat{AMN}\)\(\widehat{MBP}\)

\(\widehat{BMP}\)\(\widehat{MAN}\)

Vậy để Tam giác AMN= Tam giác MBP 

\(\Leftrightarrow\)AM=MB

Vậy khi M là trung điểm của AB thì MNCP là Hình thoi

c) Hình bình hành MNCP là Hình chữ nhật

\(\Leftrightarrow\)\(\widehat{C}\)=90 độ

\(\Leftrightarrow\)Tam giác ABC vuông tại C

Vậy khi Tam giác ABC vuông tại C thì MNCP là Hình chữ nhật

27 tháng 11 2015

Bài 1:

a) Xét t, giác ABEC có
M-tđ BC(AM- trung tuyến)

M-tđ AE(E đx A qua M)

BC cắt AE tại M

=> ABEC là hình bình hành (dhnb)

b)Hbh ABEC là hình thoi
<=> AB=AC(dhnb)

Vậy t.giác ABC cân tại A để ABEC là hình thoi

HBH ABEC là hình chữ nhật

<=> A=90 độ (dhnb)

Vậy t.giác ABC vuông tại A để ABEC là hình chữ nhật

Bài 2:

Xét t.giác AKMH có

A=90*

H=90*(MHvg góc AC)

K=90*(MK vg góc AB)

=> AKMH là hình chữ nhật(dhnb)

b) AM là trung tuyến ứng vs cạnh huyền

=> AM=MC

=> tam giác AMC cân tại M

MH là đg cao

=> MH là trung tuyến

=> H - tđ AC

Xét t,giác AMCP có

H- tđ Ac(  cmt)

H - tđ MP ( P đx M qua H)

AC cắt MP tại H

=> AMCP là hình bình hành (dhnb)

lại có AM=MC( cmt)

=> AMCP là hình thoi ( dhnb)

Bài 3:

Xét tam giác ABC vg tại A có

AB2 + AC2 = BC2

TS: 52 + 122= BC2

BC2= 25+144

=> BC= 13

Am là trung tuyến

=> AM=1/2BC

=> AM =7,5