K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2018

xem trên mạng

AH
Akai Haruma
Giáo viên
29 tháng 12 2018

Lời giải:

a) Xét tam giác $ABH$ và $ACK$ có:

\(AB=AC\) (gt)

\(\widehat{A}\) chung

\(AK=AH\) (gt)

\(\Rightarrow \triangle ABH=\triangle ACK(c.g.c)\Rightarrow BH=CK\)

b)

\(AB=AC; AK=AH\Rightarrow AB-AK=AC-AH\Rightarrow BK=CH\)

Từ tam giác bằng nhau phần a suy ra:

\(\widehat{ABH}=\widehat{ACK}\Leftrightarrow \widehat{KBO}=\widehat{HCO}\)

\(\widehat{AHB}=\widehat{AKC}\Rightarrow 180^0-\widehat{AHB}=180^0-\widehat{AKC}\)

\(\Rightarrow \widehat{CHO}=\widehat{BKO}\)

Xét tam giác $OKB$ và $OHC$ có:

\(KB=HC\) (cmt)

\(\widehat{OBK}=\widehat{OCH}\) (cmt)

\(\widehat{BKO}=\widehat{CHO}\) (cmt)

\(\Rightarrow \triangle OKB=\triangle OHC\) (g.c.g) (đpcm)

\(\Rightarrow OB=OC\)

c)

Xét tam giác $AOB$ và $AOC$ có:

\(\left\{\begin{matrix} OB=OC(cmt)\\ \text{OA chung}\\ AB=AC\end{matrix}\right.\Rightarrow \triangle AOB=\triangle AOC(c.c.c)\)

\(\widehat{OAB}=\widehat{OAC}\Rightarrow OA\) là phân giác góc $\widehat{BAC}$

AH
Akai Haruma
Giáo viên
29 tháng 12 2018

Hình vẽ:
Tính chất ba đường cao của tam giác

27 tháng 12 2021
Giúp mình bài này đi mà :<
14 tháng 5 2020

xét tam giác ABC cân tại A

=> AB=AC(t/c tam giác cân)

=>^ABC=^ACB(t/c tam giác cân)

xét tam giác BAH và tam giác CAK

^A chung

AB=AC(cmt)

^AHB=^AKC

=>  tam giác BAH = tam giác CAK(gcg)

=>BH=CK(2 cạnh tương ứng)

=>CH=BK (2 cạnh tương ứng)

b) bạn kiểm tra lại đề bài câu b nhé ! mik chưa thấy dữ kiện nào nói về điểm D cả

c) Ta có : AB=BK+AK

               AC=CH+AH

mà AB=AC(cmt);CH=BK(cmt)

=> AK=AH

xét tam giác KAO và tam giác HAO

AK=AH(cmt)

^AKO=^AHO=90o

AO-cạnh chung

=> tam giác KAO = tam giác HAO (ch-cgv)

=>^KAO=^HAO(2 góc tương ứng)

=>^BAI=^CAI

xét tam giác BAI và tam giác CAI

AB=AC(cmt)

^BAI=^CAI(cmt)

AI-cạnh chung

=> tam giác BAI = tam giác CAI

=>^AIB=^AIC ( 2 góc tương ứng)

mà ^AIB+^AIC=180o(kề bù)

=> ^AIB=^AIC=90o

=>AI vuông góc BC

      

14 tháng 5 2020

bài 2 bạn tham khảo tại link này 

https://h o c 2 4.vn/hoi-dap/question/494804.html

nhớ viết liền từ h o c 2 4 nha! vì olm ko cho viết

Bài 3 

Trả lời:

a) Xét ΔAKC,ΔAHBΔAKC,ΔAHB có :

AKCˆ=AHBˆ(=90O)AKC^=AHB^(=90O)

AB=AC(ΔABC cân tại A)AB=AC(ΔABC cân tại A)

Aˆ:chungA^:chung

=> ΔAKC=ΔAHBΔAKC=ΔAHB (cạnh huyền - góc nhọn)

=> AH = AK (2 cạnh tương ứng)

                                            ~Học tốt!~

13 tháng 4 2020

Bài 1 : a) Xét ΔAKC,ΔAHBΔAKC,ΔAHB có :

AKCˆ=AHBˆ(=90O)AKC^=AHB^(=90O)

AB=AC(ΔABC cân tại A)AB=AC(ΔABC cân tại A)

Aˆ:chungA^:chung

=> ΔAKC=ΔAHBΔAKC=ΔAHB (cạnh huyền - góc nhọn)

=> AH = AK (2 cạnh tương ứng)

Bài 2 

a, Xét tam giác OBN và tam giác MAO ta có:

OB=OA( giả thiết)

góc OBN= góc OAM=90 độ

có chung góc O

⇒⇒tam giác OBN = tam giác OAM( cạnh góc vuông/ góc nhọn kề cạnh)

suy ra: ON=OM(hai cạnh tương ứng)

+ vì OA=OB và ON=OM

suy ra : OM-OB=ON-OA

suy ra : BM=AN

b, theo câu a ta có :

tam giác OBN= tam giác OAM

suy ra : góc ANH = góc BMH( hai góc tương ứng )

xét tam giác HMB và tam giác HAN ta có

BN=AN

góc HAN = góc HBM = 900

góc ANH = góc HBM

suy ra: tam giác BMH = tam giác ANH(cạnh góc vuông/ góc nhọn kề cạnh)

suy ra : HB=HA(hai cạnh tương ứng)

xét tam giác OHA và tam giác OHB ta có

OA=OB(giả thiết)

HB=HA

OH là cạnh chung

suy ra: tam giác OHA = tam giác OHB(c.g.c)

suy ra: góc BOH= góc AOH( hai góc tương ứng)

vậy OH là tia phân giác của góc xOy

c, xét tam giác MOI và tam giác NOI ta có :

OM=On ( giả thiết)

góc BOH= góc HOA

Oi là cạnh chung

suy ra tam giác MOI= tam giác NOI(c.g.c)

suy ra góc MIO = góc NIO (hai góc tương ứng)

mà góc MIO + góc NIO = 1800 ( hai góc kề bù)

nên OI vuông góc với MN

áp dụng định lý của hai đường thẳng vuông góc ta có ba điểm O,H,I thẳng hàng

Bài 3 mình không biết làm :)))

Chúc bạn học tốt ~!