Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét tam giác AND và tam giác CNB ta có:
NB = ND (Vì N là trung điểm của BD)
góc AND = góc CNB (đối đỉnh)
NA = NC (Vì N là trung điểm của AC)
=> tam giác AND = tam giác CNB (c-g-c)
b) Vì tam giác AND = tam giác CNB
=> AD = BC (2 cạnh tương ứng)
=> góc DAN = góc BCN (2 góc tương ứng)
mà góc DAN và góc BCN là 2 góc so le trong
suy ra AD // BC
c) chưa nghĩ ra
![](https://rs.olm.vn/images/avt/0.png?1311)
b: Xét tứ giác ABCD có
N là trung điểm của AC
N là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AD=BC và AD//BC
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C E D N M K H
CM : a)Xét t/giác ABC và t/giác ADE
có AB = AD (gt)
góc EAD = góc BAC (đối đỉnh)
AC = AE (gt)
=> t/giác ABC = t/giác ADE (c.g.c)
=> ED = BC (hai cạnh tương ứng) (Đpcm)
=> góc E = góc C (hai góc tương ứng)
Mà góc E và góc C ở vị trí so le trong
=> ED // BC (Đpcm)
b) Ta có: t/giác ABC = t/giác ADE (cmt)
=> góc D = góc B (hai góc tương ứng) (1)
Mà góc EDM = góc MDA = góc D/2 (2)
góc ABN = góc NBC = góc B/2 (3)
Từ (1); (2); (3) => góc EDM = góc NBC
Xét t/giác EMD và t/giác CNB
có ED = BC (cmt)
góc EDM = góc NBC (cmt)
góc E = góc C (cmt)
=> t/giác EMD = t/giác CNB (g.c.g) (Đpcm)
c) Ta có: t/giác EMD = t/giác CNB (cmt)
=> MD = BN (hai cạnh tương ứng)
Mà MK = KD = MD/2
BH = HN = BN/2
=> KD = BH
Từ (1); (2); (3) => góc MDA = góc ABN
Xét t/giác ADK và t/giác ABN
có AD = AB (gt)
góc MDA = góc ABN (cmt)
KD = BH (cmt)
=> t/giác ADK = t/giác ABN (c.g.c)
=> góc KAD = góc BAH (hai góc tương ứng)
Do B,A,D là ba điểm thẳng hàng nên góc BAM + góc MAK + góc KAD = 1800
hay góc BAM + góc MAK + góc BAH = 1800
=> ba điểm K, A,H thẳng hàng (Đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) xét tam giác MAD và tam giác MCB có:
MB=MD(gt)
MA=MC(gt)
AMD=BMC( 2 góc đđ)
suy ra tam giác MAD=MCB(c.g.c)
suy ra ADB=DBC suy ra AD//BC(1)
CM tương tự ta có tam giác EAN=CBN suy ra EA//BC(2)
từ (1)(2) suy ra AD//BC và EA// BC
suy ra A,D,E thẳng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
MA=MB; NB=NC => MN là đường trung bình của tg ABC => MN//AC (1)
Xét tg ACD và tg END có
^ADC = ^EDN (góc đối đỉnh)
CN=BC/2; CD=BC/4 => CD=CN/2 hay DC=DN
DA=DE
=> tg ACD = tg END (c.g.c) => ^DAC = ^DEN => EN//AC (2)
Từ (1) và (2) => MN trùng EN (Từ 1 điểm ngoài đường thẳng chỉ dựng được duy nhất 1 dt // với đường thẳng đã cho)
=> M;N;E thẳng hàng
CẬU ƠI LỚP 7 ĐÃ HỌC ĐƯỜNG TRUNG BÌNH đâu , bài này tớ có cách khác
A B C D E M N
A) NỐI B VÀ E
TA CÓ
\(DC=\frac{1}{4}BC\left(1\right)\)
MÀ \(NC=\frac{1}{2}BC\)
THAY \(ND+DC=\frac{1}{2}BC\)
THAY (1) VÀO TA CÓ
\(ND+\frac{1}{4}BC=\frac{1}{2}BC\)
\(\Leftrightarrow ND=\frac{1}{2}BC-\frac{1}{4}BC\)
\(\Leftrightarrow ND=BC\left(\frac{1}{2}-\frac{1}{4}\right)\)
\(\Leftrightarrow ND=\frac{1}{4}BC\)
MÀ \(DC=\frac{1}{4}BC\)
\(\Rightarrow ND=DC\left(2\right)\)
TA LẠI CÓ \(BN=NC\left(gt\right)\)
THAY \(BN=ND+DC\)
THAY (2) VÀO TA CÓ
\(BN=2ND\)
MÀ \(BN+ND=BD\)
THAY \(2ND+ND=BD\)
\(\Leftrightarrow3ND=BD\)
\(\Leftrightarrow ND=\frac{1}{3}BD\)
VÌ AD = DE => BD LÀ ĐƯỜNG TRUNG TUYẾN THỨ NHẤT CỦA \(\Delta ABE\)
MÀ \(ND=\frac{1}{3}BD\)
=> N LÀ TRỌNG TÂM CỦA \(\Delta ABE\)
VÌ AM=BM
=> EM LÀ ĐƯỜNG TRUNG TUYẾN THỨ 2 CỦA \(\Delta ABE\)
MÀ N LÀ TRỌNG TÂM CỦA \(\Delta ABE\)
=> EM BẮT BUỘT ĐI QUA N
=> BA ĐIỂM E,M,N THẲNG HÀNG (ĐPCM)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Để chứng minh tam giác AND=tam giác CNB
Ta có: Xét tam giác AND và tam giác CNB
Có: AN=CN
^AND=^BNC
Vậy hai tam giác bằng nhau.
đpcm.
b) Khi tam giác AND=tam giác CNB
=>AD=BC(hai cạnh tương ứng)
Và^D=^B ( hai góc tương ứng)
Mà hai góc vị trí so le
Nên: \(\frac{AD}{BC}\)
đpcm.
c) Xét hai tam giác EMA và CMB
CM=EM
=> ^EMA=^BMC
=>hai tam giác bằng nhau
=>EA=CB (hai cạnh tương ứng)
Mà AD=CBvà EA = CB
=> AD=EA
=> A là trung điểm ED
đpcm.
Tự vẽ H nhé.
Dễ thấy tam giác BAC =DAE (c-g-c)
=>BC =DE => CM =EN
và góc C =góc E ( góc tương ứng)
+Xét tam giác AMC và ANE
có AC =AE ;góc C =E ; EN =CM
=> AMC =ANE ( c-g-c)
=> góc CAM =EAN; mà CAN + EAN =180
=> CAN +CAM =180 =MAN => M;A;N thẳng hàng
Nhìn hình ta thấy A,M,N thẳng hàng