K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2015

Tự vẽ H nhé.

Dễ thấy tam giác BAC =DAE (c-g-c)

=>BC =DE => CM =EN 

và góc C =góc E  ( góc tương ứng)

+Xét tam giác AMC và ANE 

có AC =AE ;góc C =E ; EN =CM

=> AMC =ANE ( c-g-c)

=> góc CAM =EAN; mà CAN + EAN =180

=> CAN +CAM =180 =MAN => M;A;N thẳng hàng

9 tháng 12 2015

Nhìn hình ta thấy A,M,N thẳng hàng

a) Xét tam giác AND và tam giác CNB ta có:

NB = ND (Vì N là trung điểm của BD)

góc AND = góc CNB (đối đỉnh)

NA = NC (Vì N là trung điểm của AC)

=> tam giác AND = tam giác CNB (c-g-c)

b) Vì tam giác AND = tam giác CNB

=> AD = BC (2 cạnh tương ứng)

=> góc DAN = góc BCN (2 góc tương ứng)

mà góc DAN và góc BCN là 2 góc so le trong

suy ra AD // BC

c) chưa nghĩ ra

30 tháng 10 2021

b: Xét tứ giác ABCD có 

N là trung điểm của AC

N là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AD=BC và AD//BC

11 tháng 12 2021

Lm mỗi 1 ý, báo cáo ucche

16 tháng 1 2019

A B C E D N M K H

CM : a)Xét t/giác ABC và t/giác ADE

có AB = AD (gt)

  góc EAD = góc BAC (đối đỉnh)

  AC = AE (gt)

=> t/giác ABC = t/giác ADE (c.g.c)

=> ED = BC (hai cạnh tương ứng) (Đpcm)

=> góc E = góc C (hai góc tương ứng)

Mà góc E và góc C ở vị trí so le trong

=> ED // BC (Đpcm)

b) Ta có: t/giác ABC = t/giác ADE (cmt)

=> góc D = góc B (hai góc tương ứng) (1)

Mà góc EDM = góc MDA = góc D/2 (2)

   góc ABN = góc NBC = góc B/2 (3)

Từ (1); (2); (3) => góc EDM = góc NBC

Xét t/giác EMD và t/giác CNB

có ED = BC (cmt)

góc EDM = góc NBC (cmt)

 góc E = góc C (cmt)

=> t/giác EMD = t/giác CNB (g.c.g) (Đpcm)

c) Ta có: t/giác EMD = t/giác CNB (cmt)

=> MD = BN (hai cạnh tương ứng)

Mà MK = KD = MD/2

    BH = HN = BN/2

=> KD = BH 

Từ (1); (2); (3) => góc MDA = góc ABN

Xét t/giác ADK và t/giác ABN

có AD = AB (gt)

 góc MDA = góc ABN (cmt)

 KD = BH (cmt)

=> t/giác ADK = t/giác ABN (c.g.c)

=> góc KAD = góc BAH (hai góc tương ứng)

Do B,A,D là ba điểm thẳng hàng nên góc BAM + góc MAK + góc KAD = 1800

hay góc BAM + góc MAK + góc BAH = 1800

=> ba điểm K, A,H thẳng hàng (Đpcm)

4 tháng 4 2016

a) xét tam giác MAD và tam giác MCB có:

MB=MD(gt)

MA=MC(gt)

AMD=BMC( 2 góc đđ)

suy ra tam giác MAD=MCB(c.g.c)

suy ra ADB=DBC suy ra AD//BC(1)

CM tương tự ta có tam giác EAN=CBN suy ra EA//BC(2)

từ (1)(2) suy ra AD//BC và EA// BC 

suy ra A,D,E thẳng hàng

4 tháng 4 2016

b) theo câu a, ta có tam giác ADM=CBM (c.g.c) suy ra AD=BC

theo câu a, ta có: tam giác AEN=BCN(c.g.c) suy ra EA=BC

từ 2 điều trên suy ra AD=EA

và theo câu a, ta có: a,d,e thẳng hàng

suy ra A là trung điểm của ED

1 tháng 8 2020

MA=MB; NB=NC => MN là đường trung bình của tg ABC => MN//AC (1)

Xét tg ACD và tg END có

^ADC = ^EDN (góc đối đỉnh)

CN=BC/2; CD=BC/4 => CD=CN/2 hay DC=DN

DA=DE

=> tg ACD = tg END (c.g.c) => ^DAC = ^DEN => EN//AC (2)

Từ (1) và (2) => MN trùng EN (Từ 1 điểm ngoài đường thẳng chỉ dựng được duy nhất 1 dt // với đường thẳng đã cho)

=> M;N;E thẳng hàng

1 tháng 8 2020

CẬU ƠI LỚP 7 ĐÃ HỌC ĐƯỜNG TRUNG BÌNH đâu  , bài này tớ có cách khác 

A B C D E M N

A) NỐI B VÀ E

TA CÓ

 \(DC=\frac{1}{4}BC\left(1\right)\)

MÀ \(NC=\frac{1}{2}BC\)

THAY \(ND+DC=\frac{1}{2}BC\)

THAY (1) VÀO TA CÓ

 \(ND+\frac{1}{4}BC=\frac{1}{2}BC\)

\(\Leftrightarrow ND=\frac{1}{2}BC-\frac{1}{4}BC\)

\(\Leftrightarrow ND=BC\left(\frac{1}{2}-\frac{1}{4}\right)\)

\(\Leftrightarrow ND=\frac{1}{4}BC\)

MÀ \(DC=\frac{1}{4}BC\)

\(\Rightarrow ND=DC\left(2\right)\)

TA LẠI CÓ \(BN=NC\left(gt\right)\)

THAY \(BN=ND+DC\)

THAY (2) VÀO TA CÓ

\(BN=2ND\)

MÀ \(BN+ND=BD\)

THAY \(2ND+ND=BD\)

\(\Leftrightarrow3ND=BD\)

\(\Leftrightarrow ND=\frac{1}{3}BD\)

VÌ AD = DE => BD LÀ ĐƯỜNG TRUNG TUYẾN THỨ NHẤT CỦA  \(\Delta ABE\)

MÀ \(ND=\frac{1}{3}BD\)

=> N LÀ TRỌNG TÂM CỦA \(\Delta ABE\)

VÌ AM=BM

=> EM LÀ ĐƯỜNG TRUNG TUYẾN THỨ 2 CỦA \(\Delta ABE\)

MÀ N LÀ TRỌNG TÂM CỦA \(\Delta ABE\)

=> EM BẮT BUỘT ĐI QUA N 

=> BA ĐIỂM E,M,N THẲNG HÀNG (ĐPCM)

22 tháng 3 2017

HFa, kg

10 tháng 11 2019

a) Để chứng minh tam giác AND=tam giác CNB

Ta có: Xét tam giác AND và tam giác CNB

Có: AN=CN

^AND=^BNC

Vậy hai tam giác bằng nhau.

đpcm.

b) Khi tam giác AND=tam giác CNB

=>AD=BC(hai cạnh tương ứng)

Và^D=^B ( hai góc tương ứng)

Mà hai góc vị trí so le

Nên: \(\frac{AD}{BC}\)

đpcm.

c) Xét hai tam giác EMA và CMB

CM=EM

=> ^EMA=^BMC

=>hai tam giác bằng nhau

=>EA=CB (hai cạnh tương ứng)

Mà AD=CBvà EA = CB

=> AD=EA

=> A là trung điểm ED

đpcm.