K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

trong sách nâng cao phát triển toán 8 có bạn nhé

DD
16 tháng 5 2021

Bạn đọc tự vẽ hình. 

Xét tam giác \(AA'C\)có \(M,B,B'\)lần lượt nằm trên các cạnh \(AA',A'C,CA\)và \(M,B,B'\)thẳng hàng, do đó theo định lí Menelaus ta có: 

\(\frac{MA}{MA'}.\frac{BA'}{BC}.\frac{B'C}{B'A}=1\Leftrightarrow\frac{MA}{MA'}.\frac{BA'}{BC}=\frac{B'A}{B'C}\)

Tương tự khi xét tam giác \(AA'B\)với các điểm \(M,B,B'\)ta cũng có: 

\(\frac{MA}{MA'}.\frac{CA'}{CB}=\frac{C'A}{C'B}\)

Suy ra \(\frac{B'A}{B'C}+\frac{C'A}{C'B}=\frac{MA}{MA'}\left(\frac{BA'}{BC}+\frac{CA'}{CB}\right)=\frac{MA}{MA'}.\frac{BC}{BC}=\frac{MA}{MA'}\).

Ta có đpcm. 

A' M B C C' B' D A E

\(\frac{AM}{A'M}=\frac{AE}{BA'}=\frac{AD}{A'C}=\frac{AD+AE}{A'C+A'B}=\frac{DE}{BC}\)

\(\Delta CBB'\)có AE // BC , nên \(\frac{AB'}{B'C}=\frac{AE}{BC}\)( hệ quả của định lí Ta-lét);

\(\Delta BCC'\)có DA // BC , nên \(\frac{AC'}{BC'}=\frac{DA}{BC}\)( hệ quả của định lí Ta-lét).

Ta có : \(\frac{AB'}{CB'}=\frac{AC'}{BC'}=\frac{AE}{BC}+\frac{DA}{BC}=\frac{DE}{BC}\)

Do đó : \(\frac{AM}{A'M}=\frac{AB'}{CB'}+\frac{AC'}{BC'}\)

23 tháng 4 2020

tự kẻ hình nha bạn

a, có \(\hept{\begin{cases}S_{HBC}=\frac{BC\cdot HA'}{2}\\S_{ABC}=\frac{BC\cdot AA'}{2}\end{cases}}\) \(\Rightarrow\frac{S_{HBC}}{S_{ABC}}=\frac{BC\cdot HA'}{2}\div\frac{BC\cdot AA'}{2}=\frac{HA'}{AA'}\)

có tương tự ta có \(\frac{S_{HAC}}{S_{ABC}}=\frac{HB'}{BB'}\)  và \(\frac{S_{HAB}}{S_{ABC}}=\frac{HC'}{CC'}\)

\(\Rightarrow\frac{S_{HAC}+S_{HBC}+S_{HAB}}{S_{ABC}}=\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}\)

\(\Rightarrow\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=1\)

23 tháng 4 2020

để mjnh làm tiếp câu b 

b, IN là pg của \(\widehat{AIB}\) (gt)

\(\Rightarrow\frac{NB}{IB}=\frac{NA}{AI}\) (tc)

\(\Rightarrow NB\cdot AI=IB\cdot NA\)

\(\Rightarrow NB\cdot AI\cdot CM=IB\cdot AN\cdot CM\left(1\right)\)

IM là pg của \(\widehat{AIC}\)  (gt)

\(\Rightarrow\frac{AM}{AI}=\frac{MC}{IC}\)

\(\Rightarrow AM\cdot IC=AI\cdot CM\)

\(\Rightarrow AM\cdot IC\cdot NB=AI\cdot CM\cdot NB\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow AN\cdot BI\cdot CM=BN\cdot CI\cdot AM\)

18 tháng 3 2020

Câu c) Các bạn tự vẽ hình nhé mình chỉ giải thôi:

Kẻ tia Cx vuông góc với CC'. Vẽ D là điểm đối xứng với A qua Cx. AD giao Cx tại I.

C/m C'AIC là hcn=> Góc BAD = 90 độ

=> CC'= AI

Có: D đối xứng với D qua Cx, I là giao điểm của AD và Cx

=> I là trung điểm của AD=> 2AI=AD

=> 2CC'=AD.

=> AB2+ AD2= BD2( Đlí PTG)

Ta có: Với 3 điểm B,C,D thì sẽ luôn có:  (BD+CD)2>= BD2

Có: AB2+ AD2=BD2

=> (BD+CD)2>= AB2+ AD2

=>  (BD+CD)2>= AB2+ (2CC')2

=> (BD+CD)2>= AB2+ 4CC'

=>  (BD+CD)2- AB2>= 4CC'(1)

CMTT=> (AB+AC)2-BC2>= 4AA'(2)

            và (AB+BC)2- AC2>= 4BB'(3)

Từ (1),(2) và (3) ta chứng minh đc:

(AB+BC+AC)2>= 4(AA'2+BB'2+CC'2)

=> GTNN bằng 4 <=> BC=AC; AC=AB; AB=BC<=> AB=BC=AC

=> GTNN là 4 khi tam giác ABC đều.

1. Cho hình thang ABCD(AB//CD) có M là giao điểm của AD và BC, N là giao điểm của hai đg chéo. Gọi I và K theo thứ tự là giao điểm của MN với AB và CD. CMR I là trung điểm của AB, K là trung điểm của CD 2.Cho hình bình hành ABCD, 1 đg thẳng đi qua D cắt AC, AB, CB theo thứ tự ở M, N, K. CMR a) DM2=MN. MK b) \(\dfrac{DM}{DN}\)+\(\dfrac{DM}{DK}\) =1 3.cho tam giác ABC lấy ba điểm A' , B', C' thứ tự trên ba cạnh BC,...
Đọc tiếp
1. Cho hình thang ABCD(AB//CD) có M là giao điểm của AD và BC, N là giao điểm của hai đg chéo. Gọi I và K theo thứ tự là giao điểm của MN với AB và CD. CMR I là trung điểm của AB, K là trung điểm của CD 2.Cho hình bình hành ABCD, 1 đg thẳng đi qua D cắt AC, AB, CB theo thứ tự ở M, N, K. CMR a) DM2=MN. MK b) \(\dfrac{DM}{DN}\)+\(\dfrac{DM}{DK}\) =1 3.cho tam giác ABC lấy ba điểm A' , B', C' thứ tự trên ba cạnh BC, CA, AB của tam giác sao cho ba đg AA' ; BB' ; CC' đồng quy thì \(\dfrac{A'B}{A'C}\)+\(\dfrac{B'C}{B'A}\)+\(\dfrac{C'A}{C'B}\)=1 4. cho tam giác ABC. 1 dg thẳng d cắt cạnh AB tại D, cắt cạnh AC tại E và cắt đg thẳng BC tại N. Gọi O là giao điểm củ BE và CD. Tia AO cắt BC tại M. CMR 2 điểm M và N CHIA TRONG VÀ CHIA NGOÀI ĐOẠN THẲNG BC theo cùng 1 tỉ lệ 5. cho hình thang ABCD (AB//CD). M là trung điểm của CD. Gọi I là giao điểm của AM và BD, gọi K là giao điểm của BM và AC a) CMR IK//AB b) đg thẳng IK cắt AD, BC theo thứ tự tại E, F. CMR EI=IK=KF hattori heiji
0