Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có \(\widehat{C}< \widehat{B}< \widehat{A}\)
nên AB<AC<BC
b: Xét ΔEBA có BA=BE
nên ΔBAE cân tại B
mà \(\widehat{ABE}=60^0\)
nên ΔBAE đều
=>BA=BE(1)
Xét ΔCAB vuông tại A có
\(\cos B=\dfrac{AB}{BC}\)
=>\(\dfrac{AB}{BC}=\dfrac{1}{2}\)
=>BA=1/2BC(2)
Từ (1) và (2) suy ra BE=1/2BC
=>E là trung điểm của BC
Ta có: ΔABC vuông tại A
mà AE là đường trung tuyến
nên AE=CE
c: Xét ΔCAB có
E là trung điểm của BC
EF//AB
Do đó: F là trung điểm của AC
d: Xét ΔCEA có
AI là đường trung tuyến
EF là đường trung tuyến
AI cắt EF tại G
Do đó: G là trọng tâm của ΔCAE
=>H là trung điểm của AE
Ta có: ΔEBA cân tại B
mà BH là đường trung tuyến
nên BH là đường cao
Gọi giao điểm của CK và ED là I
Ta có tam giác CED là tam giác cân
=> Góc CED=CDE=\(\frac{180^0-C}{2}\)
Ta cũng có Tam giác ABC là tam giác cân
=> Góc CAB=CBA=\(\frac{180^0-C}{2}\)
Mà Góc CDE và CBA là 2 góc ở vị trí đồng vị nên DE//AB
a) xét ΔABC có:
DC / BC = 17,5 / 28 = 5/8 (1)
CE / CA = 12,5 / 20 = 5/8 (2)
Từ (1), (2) → DC / BC = CE / CA
→ DE // AB ( định lí ta-let đảo )
b) vì CK là đường phân giác của góc BCA
→ KA / KB = CA / CB
→ KA+ KB / KB = CA + CB / CB
→19 / KB = 48 / 28
→ KB = 19 * 28 / 48 = 11, 08 (cm)
KA = AB - KB = 19 - 11,08 = 7, 92 (cm)
a: OB=12cm
b: Xét ΔDOA vuông tại O và ΔDIA vuông tại I có
AD chung
AO=AI
Do đó: ΔDOA=ΔDIA
Suy ra: \(\widehat{OAD}=\widehat{IAD}\)
c: Xét ΔADC có
AI là đường cao
AI là đường trung tuyến
Do đó: ΔADC cân tại A
Xét ΔBDC có
BI là đường cao
BI là đường trung tuyến
Do đó: ΔBDC cân tại B
Xét ΔADB và ΔACB có
AD=AC
DB=CB
AB chung
Do đó: ΔADB=ΔACB
Xét tam giác OBC và tam giác ODA có
góc O chung
OA=OA(gt)
OB=OD(gt)
=> Tam giác OBC=ODA(c-g-c)
=> BC=AD(cạnh tương ứng)
Xét tg ABC và tg ADE có:
AD=AB(GT)
góc BAC=DAE(đối đỉnh)
AE=AC(GT)
\(\Rightarrow\) tg ABC=tg ADE(c-g-c)
Mình giải câu 59 nhé bạn. Có gì sai sót bạn bỏ qua nhé =))
a. Ta có: LP vuông góc MN => LP là đường cao của tam giác LMN
MQ vuông góc LN => MQ là đường cao thứ 2 của tam giác LMN
Mà LP cắt MQ tại S => NS thuộc đường cao thứ 3 của tam giác LMN => NS vuông góc LN
b.+>Tính PSQ:
Ta có tam giác LPN là một tam giác vuông tại P
=> Góc LNP = 90độ - 50 độ = 40 độ
Ta lại có tam giác QLS vuông tại Q
=> Góc QLS + góc LSQ = 90 độ => góc LSQ = 90 độ - góc QLS = 90độ - 40 độ = 50 độ
Mà góc LSQ và góc PSQ là hai góc phụ nhau
=> QSP = 180 độ - 50 độ = 130 độ
+> Tính MSP
Ta thấy góc MSP và góc LSQ là hai góc đối đỉnh => góc MSP = góc LSQ = 50 độ
Mỗi đường thẳng cắt 100 đường thẳng còn lại nên tạo nên 100 giao điểm. Có 101 đường thẳng nên có 101. 100 giao điểm, nhưng mỗi giao điểm đã được tính hai lần nên chỉ có :
101. 100 : 2 = 5050 (giao điểm)
Mỗi đường thẳng cắt 100 đường tẳng còn lại tạo nên 100 giao điểm . có 101 đường thẳng nên có 101.100 giao điểm . nhưng mỗi giao điểm đã được tính hai lần nên chỉ có 101.100:2= 5050 ( giao điểm)
sac