Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C O N M
a) Ta có: \(\widehat{ABC}=\widehat{ABO}+\widehat{OBM},\widehat{ACB}=\widehat{ACO}+\widehat{OCB}\)
=> \(\widehat{ABC}-\widehat{ACB}=\widehat{ABO}+\widehat{OBC}-\widehat{ACO}-\widehat{OCB}=\left(\widehat{ABO}-\widehat{ACO}\right)+\left(\widehat{OBC}-\widehat{OCB}\right)\)
Mà các đường trung trực của AB, AC cắt nhau tại O
=> O là trực tâm
=> O thuộc đường trung trực của Bc
=> \(\widehat{OBC}=\widehat{OCB}\Rightarrow\widehat{OBC}-\widehat{OCB}=0\)
=> \(\widehat{ABC}-\widehat{ACB}=\widehat{ABO}-\widehat{ACO}\)
Mặt khác O thuộc đường trung trực AB, AC
=> \(\widehat{ABO}=\widehat{BAO},\widehat{OAC}=\widehat{ACO}\)
Vậy nên \(\widehat{ABC}-\widehat{ACB}=\widehat{BAO}-\widehat{CAO}\)(*)
b) Ta có: M thuộc đường trung trực AB
=> \(\widehat{MBA}=\widehat{MAB}=\widehat{MAO}+\widehat{OAB}\)(1)
Tương tự N thuộc đường trung trực AC
=> \(\widehat{NCA}=\widehat{NAO}+\widehat{OAC}\)(2)
Từ (1) , (2) => \(\widehat{ABC}-\widehat{ACB}=\widehat{MBA}-\widehat{NCA}=\left(\widehat{MAO}+\widehat{OAB}\right)-\left(\widehat{NAO}+\widehat{OAC}\right)\)
\(=\left(\widehat{MAO}-\widehat{NAO}\right)+\left(\widehat{OAB}-\widehat{OAC}\right)\)(**)
Từ (*), (**) suy ra \(\widehat{MAO}-\widehat{NAO}=0\Rightarrow\widehat{MAO}=\widehat{NAO}\)
=> AO là phân giác góc MAN