Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho 3 số thực dương a;b;c thỏa mãn : a+ b + c = 1 . CMR
\(\frac{a+1}{a+b+c}+\frac{b+1}{b+ac}+\frac{c+1}{c+ab}\ge9\)Dấu " = " xay ra khi nào
a/ Ta có CF vuông góc AB tại F (gt)
Nên góc CFB = 90 độ
BE vuông góc AC tại E
Nên góc BEC = 90 độ
Tứ giác CEFB có hai đỉnh kề F và E cùng nhìn cạnh BC dưới một góc vuông . Do đó tứ giác CEFB nt
Ta có góc BFC = 90(cmt) độ nên tam giác BFC vuông tại F .
góc BEC = 90 độ (cmt)
Nên tam giác BEC vuông tại E
Tam giác vuông BFC và BEC đều có BC là cạnh huyền nên tâm của đường tròn ngoại tiếp tứ giác là trung điểm của cạnh BC .
Bài 1:
b)
chứng minh EDCB là tgnt => góc AED = góc ACB
từ đó, chứng minh tam giác AED đồng dạng ACB (gg)
=> DE / BC = AD / AB
tam giác ADB vuông tại A => AD / AB = cotg A = cotg 45 = 1
c)
kẻ tiếp tuyến tại Ax của (O) (Ax thuộc nửa mp bờ AC chứa B)
góc xAB = ACB = AED
=> DE // Ax
Mà Ax vuông góc với OA nên OA vuông góc với DE. (đpcm)
Vì AP//DN nên theo định lí Ta-lét ta có
\(\frac{CN}{BK}=\frac{CQ}{QK}=\frac{CD}{KP}\)
\(\Rightarrow CN.KP=CD.BK\)
Kẻ HK vuông góc BC
\(\Delta BKM=\Delta BCD\left(g-g\right)\)
\(\Delta CHM=\Delta CBE\left(g-g\right)\)
\(\frac{\Rightarrow CH}{BC}=\frac{CM}{CE}\)
\(\Rightarrow CH\cdot CE=CM\cdot BC\left(2\right)\)
Từ (1) và (2 ) ta có :
\(BH\cdot BD+CH\cdot CE=BC^2\)
\(\Delta ABD=ACE\left(g-g\right)\)
\(\frac{\Rightarrow AB}{AC}=\frac{AD}{AE}\)
\(\Rightarrow AB\cdot AE=AC\cdot AD\)