K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF và AE/AB=AF/AC

b: XétΔAEF và ΔABC có

AE/AB=AF/AC

góc FAE chung

=>ΔAEF đồng dạng với ΔABC

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc A chung

=>ΔABE đồng dạng với ΔACF

=>AB/AC=AE/AF

=>AB*AF=AC*AE và AB/AE=AC/AF

b: Xét ΔABC và ΔAEF có

AB/AE=AC/AF

góc BAC chung

=>ΔABC đồng dạng với ΔAEF

22 tháng 3 2018

a) Xét  \(\Delta CAF\) và    \(\Delta BAE\) có:

   \(\widehat{CFA}=\widehat{BEA}=90^0\)

   \(\widehat{BAC}:\) chung

suy ra:   \(\Delta CAF~\Delta BAE\)

\(\Rightarrow\)\(\frac{AF}{AE}=\frac{AC}{AB}\)\(\Rightarrow\) \(AE.AC=AF.AB\)  (ĐPCM)

\(\Rightarrow\)\(\frac{AE}{AB}=\frac{AF}{AC}\)

Xét  \(\Delta AEF\)và   \(\Delta ABC\) có:

        \(\frac{AE}{AB}=\frac{AF}{AC}\)  

       \(\widehat{BAC}\)  CHUNG

suy ra:   \(\Delta AEF~\Delta ABC\)

5 tháng 11 2017

1qMIc8m05L5d.png

Bài giảng học thử

Video không hỗ trỡ trên thiết bị của bạn!

Bài 9: Hình chữ nhật - Phần 1 - Toán 8 - Cô Diệu Linh

Gv. Diệu Linh - 152.5 N lượt xem
27:4

Video không hỗ trỡ trên thiết bị của bạn!

Bài 1. Định lí Ta-lét trong tam giác - Phần 1 - Toán 8 - Thầy Phan Toàn

Gv. Phan Văn Toàn - 1.7 Tr lượt xem
1:36

Video không hỗ trỡ trên thiết bị của bạn!

Bài 4. Đường trung bình của tam giác, của hình thang - Phần 2 - Toán 8 - Thầy Phan Toàn

Gv. Phan Văn Toàn - 1.2 Tr lượt xem
11:21

Video không hỗ trỡ trên thiết bị của bạn!

Bài 3. Hình thang cân - Phần 3 - Toán 8 - Thầy Phan Toàn

Gv. Phan Văn Toàn - 1.2 Tr lượt xem
11:28

Video không hỗ trỡ trên thiết bị của bạn!

Bài 4. Khái niệm hai tam giác đồng dạng - Phần 2 - Toán 8 - Thầy Phan Toàn

Gv. Phan Văn Toàn - 1.8 Tr lượt xem
10:6
Xem thêm các bài giảng khác »

a) Xét ΔABC có 

BE là đường cao ứng với cạnh AC(gt)

CF là đường cao ứng với cạnh AB(gt)

BE cắt CF tại H(gt)

Do đó: H là trực tâm của ΔABC(Tính chất ba đường cao của tam giác)

Suy ra: AH⊥BC

b) Xét tứ giác BHCK có 

HC//BK(gt)

BH//CK(gt)

Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: Hai đường chéo HK và BC cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà M là trung điểm của BC(gt)

nên M là trung điểm của HK

hay H,M,K thẳng hàng(đpcm)

13 tháng 4 2019

a. Xét  AFC và  AEB có:

\(\widehat{BAC}\) chung

\(\widehat{AFC}=\widehat{AEB}=90^0\)

 AFC đồng dạng với  AEB(g.g)

⇒ \(\frac{AF}{AE}=\frac{AC}{AB}\)

 \(AB.AF=AE.AC\)

\(\frac{AF}{AE}=\frac{AC}{AB}\Rightarrow\frac{AF}{AC}=\frac{AE}{AB}\)

Xét  AEF và  ABC có :

\(\widehat{BAC}\) chung

\(\frac{AF}{AC}=\frac{AE}{AB}\left(cmt\right)\)

 AEF đồng dạng với  ABC (c.g.c)

Mấy câu kia bạn tự làm nốt đi nhá.

  Cho tam giác ABC vuông tại A ( AB < AC ). Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. a) Tia AB và tia CD cắt nhau tại E. chứng minh BE/BA = DE/DC b) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thẳng AD, BC tại I , K. Chứng minh EI=EK c) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ;...
Đọc tiếp
  Cho tam giác ABC vuông tại A ( AB < AC ). Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. a) Tia AB và tia CD cắt nhau tại E. chứng minh BE/BA = DE/DC b) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thẳng AD, BC tại I , K. Chứng minh EI=EK c) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ; Gọi P là giao điểm của BN và AD . Chúng minh : NA = NC và PQ // BD.                              d ) Gọi G là giao điểm của đường thẳng AQ và CD . Qua Q kẻ đường thẳng song song với CE , cắt đường thẳng AC tại T. Chứng minh GH // AC và PT vuông góc  với AD.    Giúp mik câu c) và d) với! (các bạn cứ coi như câu a) và b) đã có sẵn trg giả thiết đi, vì mk mới giải đc 2 câu đấy thôi.) Thanks
0