Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(vì\)AD là phân giác suy ra góc BAD =góc DAC =45 ĐỘ
cos45 độ = AD/AB =4 /AB =1/ căn 2 suy ra AB =4 NHÂN CĂN 2
TH TỰ dùng sin 45 độ =dc/ac =5/ad =1/căn 2 suy ra AC =5 CĂN 2 ÁP DỤNG PITA GO TÌM RA CẠNH bc
b,
Đặt \(BC=a;AC=b;AB=c\left(a,b,c>0\right)\)
\(\Delta BCF\)có phân giác trong BI \(\left(I\in CF\right)\)\(\Rightarrow\frac{IF}{IC}=\frac{BF}{BC}\)(1)
\(\Delta ABC\)có phân giác trong CF \(\left(F\in AB\right)\)\(\Rightarrow\frac{BF}{BC}=\frac{AF}{AC}=\frac{BF+AF}{BC+AC}=\frac{AB}{BC+AC}=\frac{c}{a+b}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{IF}{IC}=\frac{c}{a+b}\)
Tương tự, ta có \(\frac{IE}{IB}=\frac{b}{c+a}\); \(\frac{ID}{IA}=\frac{a}{b+c}\)
Từ đó \(\frac{ID}{IA}+\frac{IE}{IB}+\frac{IF}{IC}=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Ta cần chứng minh \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)với \(a,b,c>0\)
Thật vậy: Ta chứng minh bất đẳng thức phụ \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)với \(x,y,z>0\)
Áp dụng bất đẳng thức Cô-si cho 3 số dương \(x,y,z\), ta có: \(x+y+z\ge3\sqrt[3]{xyz}\)
Tương tự, ta có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\)
Từ đó \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9\)
Vậy bất đẳng thức được chứng minh.
Áp dụng bất đẳng thức trên, ta có: \(\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge9\)
\(\Leftrightarrow2\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge9\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{9}{2}\)
\(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}\ge\frac{9}{2}\)
\(\Leftrightarrow1+\frac{c}{a+b}+1+\frac{b}{c+a}+1+\frac{a}{b+c}\ge\frac{9}{2}\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
\(\Rightarrow\)đpcm
Hình tam giác t1: Polygon A, B, C Đoạn thẳng c: Đoạn thẳng [A, B] Đoạn thẳng a: Đoạn thẳng [B, C] Đoạn thẳng b: Đoạn thẳng [C, A] Đoạn thẳng j: Đoạn thẳng [I, A] Đoạn thẳng l: Đoạn thẳng [D, E] Đoạn thẳng m: Đoạn thẳng [B, I] Đoạn thẳng n: Đoạn thẳng [C, I] A = (-1.2, 6.4) A = (-1.2, 6.4) A = (-1.2, 6.4) B = (-3.32, 0.66) B = (-3.32, 0.66) B = (-3.32, 0.66) C = (6.02, 0.82) C = (6.02, 0.82) C = (6.02, 0.82) Điểm I: Giao điểm đường của g, i Điểm I: Giao điểm đường của g, i Điểm I: Giao điểm đường của g, i Điểm E: Giao điểm đường của k, b Điểm E: Giao điểm đường của k, b Điểm E: Giao điểm đường của k, b Điểm D: Giao điểm đường của k, c Điểm D: Giao điểm đường của k, c Điểm D: Giao điểm đường của k, c
Ta thấy ngay \(\Delta ADI=\Delta AEI\) (Cạnh góc vuông và góc nhọn kề)
nên DI = EI.
Xét tam giác vuông AID, ta có \(\widehat{DAI}+\widehat{ADI}=90^o\)
Lại có \(\widehat{ADI}\) là góc ngoài tam giác DIB nên \(\widehat{ADI}=\widehat{ABI}+\widehat{DIB}\)
Vậy thì \(\widehat{DAI}+\widehat{ABI}+\widehat{DIB}=90^o\) (1)
Do AI, BI, CI là các tia phân giác nên \(\widehat{DAI}+\widehat{ABI}+\widehat{BCI}=\frac{\widehat{BAC}+\widehat{ABC}+\widehat{ACB}}{2}=\frac{180^o}{2}=90^o\) (2)
Từ (1) và (2) suy ra \(\widehat{DIB}=\widehat{ICB}\)
Vậy thì \(\Delta DIB\sim\Delta ICB\left(g-g\right)\Rightarrow\frac{DB}{IB}=\frac{DI}{IC}\Rightarrow DB=\frac{IB.DI}{IC}\)
Hoàn toàn tương tự \(\Delta IEC\sim\Delta BIC\left(g-g\right)\Rightarrow\frac{IE}{BI}=\frac{EC}{IC}\Rightarrow EC=\frac{IC.IE}{IB}\)
Vậy thì \(\frac{BD}{EC}=\frac{IB.DI}{IC}:\frac{IC.IE}{IB}=\frac{IB.DI}{IC}.\frac{IB}{IC.IE}=\left(\frac{IB}{IC}\right)^2\)