\(\frac{1}{2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2018

Đặt M là trung điểm của AB và N là trung điểm của AC. Vẽ MN song song với BC.

22 tháng 4 2017

Lấy trung điểm M của AB, N là trung điểm của AC => MN là đường trung bình của tam giác ABC.

=> MN // BC.

=> ∆ AMN ∽ ∆ABC theo tỉ số K = 1/2.

22 tháng 4 2017

Giải:

Trên cạnh AB lấy điểm M sao cho AM= 2323AB.

Từ m kẻ đường song song với AB cắt AC tại N.

Ta có ∆AMN ∽ ∆ABC theo tỉ số đồng dạng K=2323

Dựng ∆A'B'C' = ∆AMN(theo trường hợp cạnh cạnh cạnh)

7 tháng 2 2018

Trên cạnh AB lấy điểm M sao cho AM= 232323AB.

Từ m kẻ đường song song với AB cắt AC tại N.

Ta có ∆AMN ∽ ∆ABC theo tỉ số đồng dạng K=232323

Dựng ∆A'B'C' = ∆AMN(theo trường hợp cạnh cạnh cạnh)

14 tháng 9 2023

Bước 1: Vẽ tam giác \(ABC\) bất kì.

Bước 2: Gọi \(M\) là trung điểm của \(AB\), \(N\) là trung điểm của \(AC\).

Khi đó ta có \(\Delta AMN\backsim\Delta ABC\) theo tỉ số \(k = \frac{1}{2}\).

Chứng minh:

Vì \(M\) là trung điểm của \(AB\), \(N\) là trung điểm của \(AC\) nên \(MN\) là đường trung bình của tam giác \(ABC\)\( \Rightarrow \left\{ \begin{array}{l}MN//BC\\MN = \frac{1}{2}BC\end{array} \right.\).

Ta có \(MN//BC\) và \(M,N\) cắt \(AB,AC\) tại \(M,N\) nên \(\Delta AMN\backsim\Delta ABC\) (định lí).

Khi đó, \(\frac{{MN}}{{BC}} = \frac{1}{2}\)