K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
8 tháng 12 2021

\(MA^2+MB^2=\overrightarrow{MA}.\overrightarrow{MA}+\overrightarrow{MB}.\overrightarrow{MB}=\left(\overrightarrow{MI}+\overrightarrow{IA}\right)\left(\overrightarrow{MI}+\overrightarrow{IA}\right)+\left(\overrightarrow{MI}+\overrightarrow{IB}\right)\left(\overrightarrow{MI}+\overrightarrow{IB}\right)\)

\(=\overrightarrow{MI}.\overrightarrow{MI}+2\overrightarrow{MI.}\overrightarrow{IA}+\overrightarrow{IA}.\overrightarrow{IA}+\overrightarrow{MI}.\overrightarrow{MI}+2\overrightarrow{MI.}\overrightarrow{IB}+\overrightarrow{IB}.\overrightarrow{IB}\)

\(=2MI^2+IA^2+IB^2+2\overrightarrow{MI}\left(\overrightarrow{IA}+\overrightarrow{IB}\right)\)

\(=2MI^2+IA^2+IB^2\)

\(=2MI^2+\left(\frac{a}{2}\right)^2+\left(\frac{a}{2}\right)^2=a^2\)

\(\Leftrightarrow MI^2=\frac{a^2}{4}\)

Suy ra \(M\)thuộc đường tròn tâm \(I\)bán kính \(\frac{a}{2}\).

23 tháng 7 2018

a) ta có : \(\overrightarrow{BA}+\overrightarrow{BC}=2\overrightarrow{BN}\) \(\Rightarrow\left|\overrightarrow{BA}+\overrightarrow{BC}\right|=2\left|\overrightarrow{BN}\right|=2BN\)

\(=2\left(AB^2-NA^2\right)=2\left(a^2-\left(\dfrac{1}{2}a\right)^2\right)=\dfrac{3}{2}a^2\)

b) \(\overrightarrow{NB}\)

c) ta có : \(\overrightarrow{NA}+\overrightarrow{MB}+\overrightarrow{PC}=\overrightarrow{NA}+\overrightarrow{AM}+\overrightarrow{PC}=\overrightarrow{NM}+\overrightarrow{PC}\)

\(=\overrightarrow{NM}+\overrightarrow{MN}=\overrightarrow{0}\left(đpcm\right)\)

d) ta có : \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MN}+\overrightarrow{MP}+\overrightarrow{MC}=\overrightarrow{MA}+\overrightarrow{AM}+\overrightarrow{MN}+\overrightarrow{NC}+\overrightarrow{MC}\)

\(\overrightarrow{MC}+\overrightarrow{MC}=2\overrightarrow{MC}\)

\(\Rightarrow\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MN}+\overrightarrow{MP}+\overrightarrow{MC}\right|=2\left|\overrightarrow{MC}\right|=2MC\)

\(=2\left(AC^2-AM^2\right)=2\left(a^2-\left(\dfrac{1}{2}a\right)^2\right)=\dfrac{3}{2}a^2\)

NV
29 tháng 5 2020

Chà bạn ghi đề sai làm mãi không được

Đề đúng là: \(m_a^2+m_b^2+m_c^2=3\sqrt{3}S\)

Thay công thức trung tuyến vào ta được:

\(\Leftrightarrow\frac{3}{4}\left(a^2+b^2+c^2\right)=3\sqrt{3}S\Leftrightarrow a^2+b^2+c^2=4\sqrt{3}S\)

Ta có:

\(VP=4\sqrt{3}\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)

\(VP\le4\sqrt{3}.\sqrt{p\left(\frac{p-a+p-b+p-c}{3}\right)^3}=4\sqrt{3}\sqrt{p\left(\frac{3p-\left(a+b+c\right)}{3}\right)^3}=\frac{4}{3}p^2\)

\(VT\le\frac{4}{3}\left(\frac{a+b+c}{2}\right)^2=\frac{1}{3}\left(a+b+c\right)^2\le a^2+b^2+c^2=VT\)

Dấu "="xảy ra khi và chỉ khi \(a=b=c\) hay tam giác ABC đều

1 tháng 6 2020

haha, ý em là Sabc là S ,em cảm ơn