Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(MA^2+MB^2=\overrightarrow{MA}.\overrightarrow{MA}+\overrightarrow{MB}.\overrightarrow{MB}=\left(\overrightarrow{MI}+\overrightarrow{IA}\right)\left(\overrightarrow{MI}+\overrightarrow{IA}\right)+\left(\overrightarrow{MI}+\overrightarrow{IB}\right)\left(\overrightarrow{MI}+\overrightarrow{IB}\right)\)
\(=\overrightarrow{MI}.\overrightarrow{MI}+2\overrightarrow{MI.}\overrightarrow{IA}+\overrightarrow{IA}.\overrightarrow{IA}+\overrightarrow{MI}.\overrightarrow{MI}+2\overrightarrow{MI.}\overrightarrow{IB}+\overrightarrow{IB}.\overrightarrow{IB}\)
\(=2MI^2+IA^2+IB^2+2\overrightarrow{MI}\left(\overrightarrow{IA}+\overrightarrow{IB}\right)\)
\(=2MI^2+IA^2+IB^2\)
\(=2MI^2+\left(\frac{a}{2}\right)^2+\left(\frac{a}{2}\right)^2=a^2\)
\(\Leftrightarrow MI^2=\frac{a^2}{4}\)
Suy ra \(M\)thuộc đường tròn tâm \(I\)bán kính \(\frac{a}{2}\).
a) ta có : \(\overrightarrow{BA}+\overrightarrow{BC}=2\overrightarrow{BN}\) \(\Rightarrow\left|\overrightarrow{BA}+\overrightarrow{BC}\right|=2\left|\overrightarrow{BN}\right|=2BN\)
\(=2\left(AB^2-NA^2\right)=2\left(a^2-\left(\dfrac{1}{2}a\right)^2\right)=\dfrac{3}{2}a^2\)
b) \(\overrightarrow{NB}\)
c) ta có : \(\overrightarrow{NA}+\overrightarrow{MB}+\overrightarrow{PC}=\overrightarrow{NA}+\overrightarrow{AM}+\overrightarrow{PC}=\overrightarrow{NM}+\overrightarrow{PC}\)
\(=\overrightarrow{NM}+\overrightarrow{MN}=\overrightarrow{0}\left(đpcm\right)\)
d) ta có : \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MN}+\overrightarrow{MP}+\overrightarrow{MC}=\overrightarrow{MA}+\overrightarrow{AM}+\overrightarrow{MN}+\overrightarrow{NC}+\overrightarrow{MC}\)
\(\overrightarrow{MC}+\overrightarrow{MC}=2\overrightarrow{MC}\)
\(\Rightarrow\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MN}+\overrightarrow{MP}+\overrightarrow{MC}\right|=2\left|\overrightarrow{MC}\right|=2MC\)
\(=2\left(AC^2-AM^2\right)=2\left(a^2-\left(\dfrac{1}{2}a\right)^2\right)=\dfrac{3}{2}a^2\)
Chà bạn ghi đề sai làm mãi không được
Đề đúng là: \(m_a^2+m_b^2+m_c^2=3\sqrt{3}S\)
Thay công thức trung tuyến vào ta được:
\(\Leftrightarrow\frac{3}{4}\left(a^2+b^2+c^2\right)=3\sqrt{3}S\Leftrightarrow a^2+b^2+c^2=4\sqrt{3}S\)
Ta có:
\(VP=4\sqrt{3}\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)
\(VP\le4\sqrt{3}.\sqrt{p\left(\frac{p-a+p-b+p-c}{3}\right)^3}=4\sqrt{3}\sqrt{p\left(\frac{3p-\left(a+b+c\right)}{3}\right)^3}=\frac{4}{3}p^2\)
\(VT\le\frac{4}{3}\left(\frac{a+b+c}{2}\right)^2=\frac{1}{3}\left(a+b+c\right)^2\le a^2+b^2+c^2=VT\)
Dấu "="xảy ra khi và chỉ khi \(a=b=c\) hay tam giác ABC đều
a: =>vecto BM+vecto MA=vecto BA
=>vecto BA=vecto BA(Luôn đúng)
b: =>vecto BA=vecto AB(loại)
c: =>vecto BA+vecto MC=vecto BA
=>vecto MC=vecto 0
=>M trùng với C