K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2018

a) Xét tứ giác BIKC có \(\widehat{BIC}=\widehat{BKC}=90^0\)

\(\widehat{BIC}\)\(\widehat{BKC}\) cùng nhìn cạnh BC

Suy ra BIKC nội tiếp đường tròn đường kính BC

\(\Rightarrow\)B,I,K,C cùng thuộc 1 đường tròn đường kính BC

b) Xét tứ giác AIHK có \(\widehat{AIH}+\widehat{AKH}=90^0+90^0=180^0\)

Suy ra AIHK nội tiếp đường tròn

\(\Rightarrow\)A,I,H,K cùng thuộc 1 đường tròn

a) Xét tứ giác BIKC có 

\(\widehat{BIC}=\widehat{BKC}\left(=90^0\right)\)

nên BIKC là tứ giác nội tiếp

hay B,I,K,C cùng thuộc đường tròn đường kính BC(Vì \(\widehat{BIC}=\widehat{BKC}=90^0\))

b) Xét tứ giác AIHK có 

\(\widehat{AIH}+\widehat{AKH}=180^0\)

nên AIHK là tứ giác nội tiếp

hay A,I,H,K cùng thuộc 1 đường tròn

16 tháng 11 2021

b: Xét tứ giác ANHM có 

\(\widehat{ANH}+\widehat{AMH}=180^0\)

Do đó: ANHM là tứ giác nội tiếp

hay A,N,H,M cùng thuộc 1 đường tròn

12 tháng 11 2021

 

 1501516278_1491269794_4001.jpg 
15 tháng 12 2020

14 tháng 4 2021

a) Do BE và CF là các đường cao trong tam giác ABC nên ˆBEC=90∘ˆBFC=90∘ 

Tứ giác BCEF có góc E và góc F cùng nhìn cạnh BC và bằng nhau (cùng bằng 90∘) nên là tứ giác nội tiếp.

b) Tứ giác BCEF là tứ giác nội tiếp nên ˆAFE=ˆACB, mà ˆACB=ˆASB (cùng chắn cung AB) nên ˆAFE=ˆASB

Suy ra tứ giác BFMS là tứ giác nội tiếp.

Do đó ˆFMS=180∘−ˆFBS=90∘.. Vậy OA ⊥⊥ EF.

c)

+) Tứ giác BCEF nội tiếp nên ˆAEF=ˆABC (1)

Từ OA ⊥ PE suy ra ˆAIB=ˆAPE(cùng phụ với ˆMAP). (2)

Từ (1) và (2) suy ra ΔAPE∽ΔABI (g.g).

+) Tứ giác BHCS có BH // CS (cùng vuông góc với AS) và BS // CH (cùng vuông góc với AB) nên là hình bình hành. Do đó ba điểm H, K, S thẳng hàng.

Ta sẽ chứng minh hai góc đồng vị ˆPIM và HSM^ bằng nhau.

Tứ giác PDIM nội tiếp (vì có hai góc vuông M và D đối nhau) nên ˆPIM=ˆPDM (3)

Ta có:

ΔAHE∽ΔACDΔ nên AH.AD = AE.AC.

ΔAME∽ΔACSnên AM.AS = AE.AC.

Suy ra AH.AD = AM.AS ⇒AH/AM=AS/AD.

Do đó ΔMAH∽ΔDAS(c.g.c). Suy ra AHM^=ASD^.

Từ đó ta có tứ giác DHMS là tứ giác nội tiếp. Suy ra ˆHDM=ˆHSM. (4)

Từ (3) và (4) suy ra HS // PI, hay KH // PI.