K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LV
14 tháng 5 2017
a) Áp dụng hệ quả định lý thales:
\(\frac{MQ}{CD}+\frac{MP}{AB}=\frac{AM}{AC}+\frac{MC}{AC}=\frac{AC}{AC}=1\)
Áp dụng BĐT bunyakovsky:
\(\left(\frac{1}{AB^2}+\frac{1}{CD^2}\right)\left(MP^2+MQ^2\right)\ge\left(\frac{MP}{AB}+\frac{MQ}{CD}\right)^2=1\)
\(\Rightarrow\frac{1}{AB^2}+\frac{1}{CD^2}\ge\frac{1}{MP^2+MQ^2}\)
dấu = xảy ra khi \(\frac{MC}{AM}=\frac{CD^2}{AB^2}\)
b) chưa nghĩ :v
a) Gọi H là giao của PN và BC, I là giao của MP và BC
Ta có \(\frac{AN}{AC}+\frac{NC}{AC}=1\left(1\right)\)
Mặt khác áp dụng định lý Talet ta có:
\(\frac{NC}{AC}=\frac{CH}{BC}=\frac{CI+CH}{BC}=\frac{CI}{BC}+\frac{CH}{BC}\left(2\right)\)
Vì MI//AC nên \(\frac{CI}{BC}=\frac{AM}{AB}\left(3\right)\)
Vì \(\Delta\)ABC đồng dạng với \(\Delta\)PHI (gg)
=> \(\frac{IH}{BC}=\frac{PH}{AB}\)mà \(\frac{PH}{AB}=\frac{PQ}{AQ}\left(4\right)\)
Từ (1)(2)(3)(4) => \(\frac{AN}{AC}+\frac{NC}{AC}=....=\frac{AM}{AB}+\frac{AN}{AC}+\frac{PQ}{AQ}=1\left(đpcm\right)\)
b) Từ câu (a) ta có:
\(\frac{AM\cdot AN\cdot PQ}{AB\cdot AC\cdot AQ}=\frac{CI\cdot AN\cdot IH}{BC\cdot AC\cdot BC}=\frac{CI\cdot BH\cdot IH}{BC\cdot BC\cdot BC}=\frac{1}{27}\)
=> \(CI\cdot BH\cdot IH=\frac{BC^3}{27}\)
Mặt khác áp dụng BĐT Cosi cho 3 số không âm ta có:
\(CI\cdot BH\cdot IH\le\frac{\left(CI+IH+HB\right)^3}{3^3}=\frac{1}{27}\)
A B C H Q I P M N
Gọi H = PN ∩ BC; I = MP ∩ BC
a, Ta có: \(\frac{AN}{AC}+\frac{NC}{AC}=1\left(1\right)\)
Mặt khác, áp dụng định lý Ta-lét, ta có:
\(\frac{NC}{AC}=\frac{CH}{BC}=\frac{CI+HI}{BC}=\frac{CI}{BC}+\frac{HI}{BC}\left(2\right)\)
Vì MI//AC nên \(\frac{CI}{BC}=\frac{AM}{AB}\left(3\right)\)
Vì ΔABC đồng dạng với ΔPHI (g.g)
=> \(\frac{HI}{BC}=\frac{PH}{AB}\) mà \(\frac{PH}{AB}=\frac{PQ}{AB}\)
nên \(\frac{HI}{BC}=\frac{PQ}{AB}\left(4\right)\)
Từ (1), (2), (3), (4) suy ra:
\(\frac{AN}{AC}+\frac{NC}{AC}=\frac{AN}{AC}+\frac{CI}{BC}+\frac{HI}{BC}\)
\(=\frac{AN}{AC}+\frac{AM}{AB}+\frac{PQ}{AQ}=1\left(đpcm\right)\)
b, Từ câu a ta có:
\(\frac{AM.AN.PQ}{AB.AC.AQ}=\frac{CI.AN.IH}{BC.AC.BC}=\frac{CI.BH.IH}{BC.BC.BC}=\frac{1}{27}\)
\(\Leftrightarrow CI.BH.IH=\frac{1}{27}.BC^3\)
Áp dụng BĐT Cô-si cho 3 số không âm, ta có:
\(CI.BH.IH\le\frac{\left(CI+BH+IH\right)^3}{3^3}=\frac{1}{27}.BC^3\)
Dấu "=" xảy ra <=> CI = BH = IH
<=> Q là trung điểm của BC và AP\(=\frac{2}{3}AQ\)