Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đoạn thẳng f: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [B, A] Đoạn thẳng i: Đoạn thẳng [C, A] Đoạn thẳng k_1: Đoạn thẳng [X, Y] Đoạn thẳng n: Đoạn thẳng [B, Y] Đoạn thẳng p: Đoạn thẳng [E, A] Đoạn thẳng q: Đoạn thẳng [E, I] Đoạn thẳng r: Đoạn thẳng [Y, K] Đoạn thẳng s: Đoạn thẳng [N, I] Đoạn thẳng a: Đoạn thẳng [I, M] Đoạn thẳng b: Đoạn thẳng [E, M] Đoạn thẳng c: Đoạn thẳng [A, I] Đoạn thẳng d: Đoạn thẳng [N, M] B = (-1.6, -0.66) B = (-1.6, -0.66) B = (-1.6, -0.66) C = (5.82, -0.68) C = (5.82, -0.68) C = (5.82, -0.68) Điểm A: Điểm trên g Điểm A: Điểm trên g Điểm A: Điểm trên g Điểm X: Điểm trên f Điểm X: Điểm trên f Điểm X: Điểm trên f Điểm Y: Giao điểm đường của j, i Điểm Y: Giao điểm đường của j, i Điểm Y: Giao điểm đường của j, i Điểm I: Giao điểm đường của l, m Điểm I: Giao điểm đường của l, m Điểm I: Giao điểm đường của l, m Điểm E: Trung điểm của n Điểm E: Trung điểm của n Điểm E: Trung điểm của n Điểm K: Giao điểm đường của l, f Điểm K: Giao điểm đường của l, f Điểm K: Giao điểm đường của l, f Điểm N: Giao điểm đường của m, i Điểm N: Giao điểm đường của m, i Điểm N: Giao điểm đường của m, i Điểm M: Giao điểm đường của t, k_1 Điểm M: Giao điểm đường của t, k_1 Điểm M: Giao điểm đường của t, k_1 K
Gọi trung điểm của XY, YC và BC lần lượt là M, N và K..
Do I là tâm đường tròn ngoại tiếp tam giác XYC nên \(\widehat{YMI}=\widehat{YNI}=90^o\)
Vậy ta có YMIN là tứ giác nội tiếp hay \(\widehat{IYN}=\widehat{IMN}\Rightarrow\widehat{AYI}=\widehat{EMI}\) (1)
Xét tam giác BYX có E và M lần lượt là trung điểm của YB và YX nên EM song song và bằng một nửa BX.
Ta cũng có ngay E, M, N thẳng hàng.
Do XY // AB nên \(\frac{AY}{AC}=\frac{BX}{BC}\Rightarrow\frac{AY}{BX}=\frac{AC}{BC}\)
\(\Rightarrow\frac{AY}{EM}=\frac{AY}{\frac{BX}{2}}=2.\frac{AY}{BX}=\frac{2.AC}{BC}=\frac{AC}{BK}\)'
Do tam giác ABC cân tại A nên \(AK\perp BC\)
Xét tam giác vuông ABK, theo định nghĩa tỉ số lượng giác thì \(cos\widehat{ABC}=\frac{BK}{AB}\)
Vậy thì \(\frac{YI}{MI}=\frac{1}{sin\widehat{XYK}}=\frac{1}{cos\widehat{YXK}}=\frac{1}{cos\widehat{ABC}}=\frac{1}{\frac{BK}{AB}}=\frac{AB}{BK}=\frac{AC}{BK}\)
Vậy nên \(\frac{AY}{EM}=\frac{YI}{MI}\) (2)
Từ (1) và (2) ta có \(\Delta AYI\sim\Delta EMI\left(c-g-c\right)\Rightarrow\widehat{IEN}=\widehat{IAN}\)
Xét tứ giác AEIN có \(\widehat{IEN}=\widehat{IAN}\) nên nó là tứ giác nội tiếp.
\(\Rightarrow\widehat{AEI}=180^o-\widehat{ANI}=90^o\)
mình xin sửa lại yêu cầu là: chứng minh góc AEI bằng 90
mong các bạn giúp

1: Xét ΔBIC có
\(\widehat{BIC}+\widehat{IBC}+\widehat{ICB}=180^0\)
\(\Leftrightarrow\widehat{BIC}+45^0=180^0\)
hay \(\widehat{BIC}=135^0\)
\(\Leftrightarrow\widehat{CID}=180^0-135^0=45^0\)

1: AB^2=BH*BC
=>BC=8^2/5=12,8(cm)
\(AC=\sqrt{BC^2-AB^2}=\dfrac{8\sqrt{39}}{5}\left(cm\right)\)
2:
a: Xét tứ giác AMHN có
góc AMH+góc ANH=90+90=180 độ
=>AMHN nội tiếp đường tròn đường kính AH
b: ΔHAC vuông tại H có HM là trung tuyến
nên AC=2HM
Xét ΔABC vuông tại A có AH là đường cao
nên CH*CB=CA^2
=>CH*CB=4HM^2
3: Xét ΔMAN vuông tại A và ΔMHN vuông tại H có
MN chung
MA=MH
=>ΔMAN=ΔMHN
=>AN=HN
=>góc NAH=góc NHA
góc NHA+góc NHB=90 độ
góc NAH+góc NBH=90 độ
mà góc NAH=góc NHA
nên góc NBH=góc NHB
=>NH=NB=NA
=>N là trung điểm của AB
Bạn thịnh ơi bạn có cái hình không ạ
nếu có thì chụp cho mình với