Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAIE và ΔCIB có
IA=IC
\(\widehat{AIE}=\widehat{CIB}\)
IE=IB
Do đó: ΔAIE=ΔCIB
b: Xét tứ giác ABCE có
I là trung điểm của AC
Ilà trung điểm của BE
Do đó: ABCE là hình bình hành
Suy ra: AB//CE
c: Xét ΔABC và ΔFCB có
AB=FC
BC chung
AC=FB
Do đó:ΔABC=ΔFCB
a, đơn giản ta CM được hai tam giác DCB và EBC bằng nhau => góc EBC = góc DCB => tam giác BIC cân tại I => IB = IC (đpcm)
tương tự chứng minh được hai tam giác DIB và EIC bằng nhau => ID = IE (đpcm)
b, ta có tam giác DAE cân tại A => 2góc D = 180o -góc A
tam giác BAC cân tại A => 2 góc B = 180o - góc A
=> góc D = góc B => BC// DE (đpcm)
c, Nối AM => AM vừa là trung tuyến vừa là đường trung trựctại M của BC
Nối IM => IM vừ là trung tuyến vừa là đường trung trực tại M của BC
=> AM và IM cùng nằm trên đường trung trực của BC tại M hay 3 điểm A,M,I thẳng hàng
a) Tam giác ABC cân tại A suy ra \(\widehat{B_1}=\widehat{C_1}\)
Xét tam giác ABM và tam giác ACM có :
AB = AC ( tam giác ABC cân tại A )
\(\widehat{B_1}=\widehat{C_1}\left(cmt\right)\)
BM = CM ( gt )
\(\Rightarrow\Delta ABM=\Delta ACM\left(c-g-c\right)\)
\(\Rightarrow\widehat{A_1}=\widehat{A_2}\)
Xét tam giác ABI và tam giác ACI có :
AI chung
AB = AC ( tam giác ABC cân tại A )
\(\widehat{A_1}=\widehat{A_2}\left(cmt\right)\)
\(\Rightarrow\Delta ABI=\Delta ACI\left(c-g-c\right)\)
\(\Rightarrow IB=IC\)
Vì AD = AB + BD
AE = AC + BC
Mà AB = AC ( tam giác ABC cân tại A )
DB = EC ( gt )
\(\Rightarrow AD=AE\)
Xét tam giác ADI và tam giác AEI có :
AI chung
AD = AE ( cmt )
\(\widehat{A_1}=\widehat{A_2}\left(cmt\right)\)
\(\Rightarrow\Delta ADI=\Delta AEI\left(c-g-c\right)\)
\(\Rightarrow DI=EI\)hay ID = IE
b) Vì tam giác ABC cân tại A ( gt )
\(\Rightarrow\)\(\widehat{B_1}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)
Vì tam giác ADE có AD = AE ( cmt )
Suy ra tam giác ADE cân
\(\Rightarrow\widehat{D}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)
Từ ( 1 ) và ( 2 ) suy ra \(\widehat{B_1}=\widehat{D}\)mà hai góc này ở vị trí đồng vị
Suy ra BC // DE
c) Ta có : \(\widehat{M_2}=\widehat{M_1}\left(\Delta ABM=\Delta ACM\right)\left(cmt\right)\)
Mà \(\widehat{M_1}+\widehat{M_2}=180^o\)( 2 góc này ở vị trí kề bù )
\(\widehat{M_2}=\widehat{M_3}\)( đối đỉnh )
\(\Rightarrow\widehat{M_1}+\widehat{M_3}=180^o\)
\(\Rightarrow\)A ; M ; I thẳng hàng
Xét tam giácAIB và tam giác CID, có
AI=IC
AIB=CID
BI=ID
suy ra tam giác AIB=tam giacsCID(c-g-c)
b)Chứng minh như a,suy ra tam giac AID=tam Giác CIB
suy ra IAD=ICB mà 2 góc này ở vị trí so le trong suy ra điều phải chứng minh
Xét tam giác IAE và ICB có:
IA = IC (gt)
Góc BIC = góc EIA (vì 2 góc đối đỉnh)
IB = IC (gt)
Suy ra: tam giác IAE = tam giác ICB (c.g.c)
Suy ra góc AEI = góc IBC (2 góc tương ứng)
mà 2 góc nằm ở vị trí so le trong
nên AE//BC
c,
Người ta bảo cm AB//CF mà.