Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:Câu hỏi của Kaito1412_TV - Toán lớp 7 - Học toán với OnlineMath
a) I là giao điểm của 2 đường phân giác của tam giác ABC
=> I cũng là giao điểm của 3 đường phân giác của tam giác ABC
hay áp dụng định lý của ba đường phân giác của tam giác thì I cách đều 3 cạnh
<=> ID = IE ( đpcm ).
b)\(\widebat{A}+\widebat{B}+\widebat{C}=180^o\)
\(\Leftrightarrow\widebat{B}+\widebat{C}=180^o-\widebat{A}\)
\(\Leftrightarrow\frac{\widebat{B}}{2}+\frac{\widebat{C}}{2}=90^o-\frac{\widebat{A}}{2}\)
\(\Leftrightarrow\widebat{BIC}=180^o-\left(90^o-\frac{\widebat{A}}{2}\right)=90^o+\frac{\widebat{BAC}}{2}\left(đpcm\right).\)
c) Áp dụng định lý Pytago:
IA2 = ID2 + AD2
IB2 = ID2 + BD2
=> IA2 + IB2 = 2ID2 +AD2 +BD2 ( đpcm ).
d) Chưa nghĩ ra.
Lưu ý: Làm hơi tắt.
d, Từ I kẻ đường thẳng vuông góc với BC cắt BC tại F.
Xét tam giác vuông DIB và FIB có BD = BF.
CM tương tự : CE = CF
BF + CF =BC => CE + BD = BC.
A B C D H E F K
Xét tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 (đl)
góc BAC = 80(Gt); góc ABC = 60 (gt)
=> góc ACB = 180 - 80 - 60 = 40
=> góc ACB < góc ABC < góc BAC ; tam giác ABC
=> AB < AC < BC (đl)
b, xét tam giác ABE và tam giác DBE có : BE chung
AB = BD (gt)
góc ABE = góc DBE do BE là phân giác của góc ABC (gt)
=> tam giác ABE = tam giác DBE (c-g-c)
c, xét tam giác BAD có : AB = BD (gt) => tam giác BAD cân tại B (đn)
mà góc ABC = 60 (gt)
=> tam giác BAD đều (tc)
=> AD = AB (Đn)
BE là phân giác của góc ABC (Gt) => góc ABE = 1/2.góc ABC mà góc ABC = 60 (gt)
=> góc ABE = 12.60 = 30
Xét tam giác ABE có : góc ABE + góc AEB + góc BAE = 180 (đl)
góc BAE = 80 (gt)
=> góc AEB = 180 - 80 - 30 = 70
=> góc AEB < góc BAE ; tam giác BAE
=> AB < BE hay AD < BE (đl)
d, không biết
a: Xét ΔABC có I là giao điểm của các đường phân giác
nên AI là phân giác của góc BAC
Xét ΔADI vuông tại D và ΔAEI vuông tại E có
AI chung
góc DAI=góc EAI
Do đó: ΔADI=ΔAEI
Suy ra: ID=IE
b: \(\widehat{ABC}+\widehat{ACB}=180^0-\widehat{A}\)
\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=90^0-\dfrac{1}{2}\cdot\widehat{A}\)
\(\widehat{BIC}=180^0-90^0+\dfrac{1}{2}\cdot\widehat{A}=\dfrac{1}{2}\cdot\widehat{A}+90^0\)
a) Xét tam giác vuông ADB và tam giác vuông ACE có:
Góc A chung
AB = AC (gt)
\(\Rightarrow\Delta ABD=\Delta ACE\) (Cạnh huyền - góc nhọn)
b) Do \(\Delta ABD=\Delta ACE\Rightarrow AD=AE\)
Xét tam giác vuông AEH và tam giác vuông ADH có:
Cạnh AH chung
AE = AD (cmt)
\(\Rightarrow\Delta AEH=\Delta ADH\) (Cạnh huyền - cạnh góc vuông)
\(\Rightarrow HE=HD\)
c) Xét tam giác ABC có BD, CE là đường cao nên chúng đồng quy tại trực tâm. Vậy H là trực tâm giác giác.
Lại có AM cũng là đường cao nên AM đi qua H.
d) Xét các tam giác vuông EBC và EAC, áp dụng định lý Pi-ta-go ta có:
\(BC^2=EB^2+EA^2;AC^2=EA^2+EC^2\)
Tam giác ABC cân tại A nên AB = AC hay \(AB^2=AC^2\)
Vậy nên \(AB^2+AC^2+BC^2=2AC^2+BC^2=2\left(EA^2+EC^2\right)+EB^2+EC^2\)
\(=3EC^2+2EA^2+BC^2\).