Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEBC có
M là trung điểm của AB
M là trung điểm của EC
Do đó: AEBC là hình bình hành
Suy ra: AE=BC
b: Xét tứ giác ABCF có
N là trung điểm của AC
N là trung điểm của BF
Do đó: ABCF là hình bình hành
Suy ra: AF=BC
mà AE=BC
nên AE=FA
a: Xét tứ giác AEBC có
M là trung điểm của AB
M là trung điểm của EC
Do đó: AEBC là hình bình hành
Suy ra: AE=BC
b: Xét tứ giác ABCF có
N là trung điểm của AC
N là trung điểm của BF
Do đó: ABCF là hình bình hành
Suy ra: AF=BC
mà AE=BC
nên AE=FA
a: Xét tứ giác ABCQ có
N là trung điểm của AC
N là trung điểm của BQ
Do đó: ABCQ là hình bình hành
Suy ra: AQ//BC và AQ=BC
Xét tứ giác ACBP có
M là trung điểm của AB
M là trung điểm của CP
Do đó: ACBP là hình bình hành
Suy ra: AP//BC và AP=BC
Ta có: AQ//BC
AP//BC
mà AQ,AP có điểm chung là A
nên Q,A,P thẳng hàng
mà AP=AQ
nên A là trung điểm của PQ
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC và MN=BC/2
hay MN=PQ/4
=>PQ=4MN
a) Xét tam giác AME và tam giác BMC, có:
góc AME = góc BMC ( đối đỉnh)
EM = MC ( giải thiết )
AM= MB ( M là trung điểm của AB )
\(\Rightarrow\) TAm giác AME = tam giác BMC ( c-g-c)
\(\Rightarrow\)góc AEM = góc BCM ( hai góc tương ứng)
\(\Rightarrow AE\)//\(BC\) ( đpcm)
A B C M N F E
a) Xét \(\Delta BNM\)và \(\Delta ACM\)có :
NM = MC ( gt )
\(\widehat{NMB}=\widehat{CMA}\)( hai góc đối đỉnh )
MB = MA ( gt )
Suy ra : \(\Delta BNM\)= \(\Delta ACM\)( c.g.c )
\(\Rightarrow NB=AC\)( hai cạnh tương ứng )
\(\Rightarrow\widehat{BNM}=\widehat{ACM}\)( hai góc tương ứng )
Mà hai góc này ở vị trí so le trong nên NB // AC
b) Xét \(\Delta BNC\)có \(\widehat{EBC}\)là góc ngoài nên \(\widehat{EBC}\)= \(\widehat{BNC}+\widehat{BCN}\)hay \(\widehat{EBC}\)= \(\widehat{ACM}+\widehat{BCN}=\widehat{ACB}\)
Xét \(\Delta BEC\)và \(\Delta BAC\)có :
BE = AC ( vì NB = BE = AC )
\(\widehat{EBC}\)= \(\widehat{ACB}\)( cmt )
BC ( cạnh chung )
Suy ra : \(\Delta BEC\)= \(\Delta BAC\)( c.g.c )
\(\Rightarrow AB=EC\)( hai cạnh tương ứng )
c) Vì \(\widehat{EFC}=\widehat{AFB}\)( hai góc đối đỉnh )
Mà \(\widehat{AFB}=180^o-\widehat{AFC}\)
\(\Rightarrow\widehat{EFC}+\widehat{AFC}=180^o-\widehat{AFC}+\widehat{AFC}=180^o\)
\(\Rightarrow\widehat{AFE}\)là góc bẹt nên A,F,E thẳng hàng
Ta có hình vẽ:
K A B C M K I N
a) Vì M là trung điểm của AB nên AM = BM = \(\frac{AB}{2}\)
Xét Δ AMK và Δ BMC có:
AM = BM (cmt)
AMK = BMC (đối đỉnh)
MK = MC (gt)
Do đó, Δ AMK = Δ BMC (c.g.c) (đpcm)
b) Vì N là trung điểm của AC nên AN = NC
Xét Δ ANI và Δ CNB có:
AN = NC (cmt)
ANI = CNB (đối đỉnh)
NI = NB (gt)
Do đó, Δ ANI = Δ CNB (c.g.c)
=> AI = BC (2 cạnh tương ứng) (đpcm)
c) Vì Δ AMK = Δ BMC (câu a) => AKM = MCB (2 góc tương ứng)
Mà AKM và MCB là 2 góc so le trong nên AK // BC (1)
Vì Δ ANI = Δ CNB (câu b) => IAN = NBC (2 góc tương ứng)
Mà IAN và NBC là 2 góc so le trong nên AI // BC (2)
Từ (1) và (2) => AK và AI trùng nhau hay 3 điểm I, A, K thẳng hàng (3)
Có: Δ AMK = Δ BMC (câu a) => AK = BC (2 cạnh tương ứng)
Mà AI = BC (câu b) => AK = AI (4)
Từ (3) và (4) => A là trung điểm của IK (đpcm)
A B C M N D E 1 2 1 1
Xét \(\Delta DAM\) và \(\Delta BAC\) có :
Ma = MB ( gt )
\(\widehat{M_1}=\widehat{M_2}\) ( đối đỉnh )
MA = MC ( gt )
=> \(\Delta DAM\)=\(\Delta BAC\) ( c . g . c)
=> BA = BC , \(\widehat{D_1}=\widehat{C_1}\)
Mà \(\widehat{D_1};\widehat{C_1}\) là 2 góc so le trong
=> AD // BC .
C/m tương tự ta có :
AE = BC ; AE // BC
Dễ thấy : Qua 2 tồn tại 2 đường thẳng cùng song song với BC . Theo tiên đề ơ - clit
=> Hai dường thẳng đó trùng nhau .
=> D ' A ' E thẳng hàng .
Mà DA = AE ( = BC )
=> A là trung điểm của DE