K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AEBC có 

M là trung điểm của AB

M là trung điểm của EC

Do đó: AEBC là hình bình hành

Suy ra: AE=BC

b: Xét tứ giác ABCF có 

N là trung điểm của AC

N là trung điểm của BF

Do đó: ABCF là hình bình hành

Suy ra: AF=BC

mà AE=BC

nên AE=FA

a: Xét tứ giác AEBC có 

M là trung điểm của AB

M là trung điểm của EC

Do đó: AEBC là hình bình hành

Suy ra: AE=BC

b: Xét tứ giác ABCF có 

N là trung điểm của AC

N là trung điểm của BF

Do đó: ABCF là hình bình hành

Suy ra: AF=BC

mà AE=BC

nên AE=FA

a: Xét tứ giác ABCQ có 

N là trung điểm của AC

N là trung điểm của BQ

Do đó: ABCQ là hình bình hành

Suy ra: AQ//BC và AQ=BC

Xét tứ giác ACBP có

M là trung điểm của AB

M là trung điểm của CP

Do đó: ACBP là hình bình hành

Suy ra: AP//BC và AP=BC

Ta có: AQ//BC

AP//BC

mà AQ,AP có điểm chung là A

nên Q,A,P thẳng hàng

mà AP=AQ

nên A là trung điểm của PQ

b: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC và MN=BC/2

hay MN=PQ/4

=>PQ=4MN

8 tháng 7 2015

a) Xét tam giác AME và tam giác BMC, có:

            góc AME = góc BMC ( đối đỉnh)

           EM = MC ( giải thiết )

           AM= MB ( M là trung điểm của AB )

\(\Rightarrow\) TAm giác AME = tam giác BMC ( c-g-c)

\(\Rightarrow\)góc AEM = góc BCM ( hai góc tương ứng) 

\(\Rightarrow AE\)//\(BC\) ( đpcm)

 

10 tháng 1 2018

A B C M N F E

a) Xét \(\Delta BNM\)và \(\Delta ACM\)có :

NM = MC ( gt )

\(\widehat{NMB}=\widehat{CMA}\)( hai góc đối đỉnh )

MB = MA ( gt )

Suy ra : \(\Delta BNM\)\(\Delta ACM\)( c.g.c )

\(\Rightarrow NB=AC\)( hai cạnh tương ứng )

\(\Rightarrow\widehat{BNM}=\widehat{ACM}\)( hai góc tương ứng )

Mà hai góc này ở vị trí so le trong nên NB // AC

b) Xét \(\Delta BNC\)có \(\widehat{EBC}\)là góc ngoài nên \(\widehat{EBC}\)\(\widehat{BNC}+\widehat{BCN}\)hay \(\widehat{EBC}\)\(\widehat{ACM}+\widehat{BCN}=\widehat{ACB}\)

Xét \(\Delta BEC\)và \(\Delta BAC\)có :

BE = AC ( vì NB = BE = AC )

\(\widehat{EBC}\)\(\widehat{ACB}\)( cmt )

BC ( cạnh chung )

Suy ra : \(\Delta BEC\)\(\Delta BAC\)( c.g.c )

\(\Rightarrow AB=EC\)( hai cạnh tương ứng )

c) Vì \(\widehat{EFC}=\widehat{AFB}\)( hai góc đối đỉnh )

Mà \(\widehat{AFB}=180^o-\widehat{AFC}\) 

\(\Rightarrow\widehat{EFC}+\widehat{AFC}=180^o-\widehat{AFC}+\widehat{AFC}=180^o\)

\(\Rightarrow\widehat{AFE}\)là góc bẹt nên A,F,E thẳng hàng

25 tháng 7 2016

Toán lớp 7Trang 2 nek, z là hết mờ hen^^

25 tháng 7 2016

Toán lớp 7Trang 1 nek

2 tháng 11 2016

Ta có hình vẽ:

K A B C M K I N

a) Vì M là trung điểm của AB nên AM = BM = \(\frac{AB}{2}\)

Xét Δ AMK và Δ BMC có:

AM = BM (cmt)

AMK = BMC (đối đỉnh)

MK = MC (gt)

Do đó, Δ AMK = Δ BMC (c.g.c) (đpcm)

b) Vì N là trung điểm của AC nên AN = NC

Xét Δ ANI và Δ CNB có:

AN = NC (cmt)

ANI = CNB (đối đỉnh)

NI = NB (gt)

Do đó, Δ ANI = Δ CNB (c.g.c)

=> AI = BC (2 cạnh tương ứng) (đpcm)

c) Vì Δ AMK = Δ BMC (câu a) => AKM = MCB (2 góc tương ứng)

Mà AKM và MCB là 2 góc so le trong nên AK // BC (1)

Vì Δ ANI = Δ CNB (câu b) => IAN = NBC (2 góc tương ứng)

Mà IAN và NBC là 2 góc so le trong nên AI // BC (2)

Từ (1) và (2) => AK và AI trùng nhau hay 3 điểm I, A, K thẳng hàng (3)

Có: Δ AMK = Δ BMC (câu a) => AK = BC (2 cạnh tương ứng)

Mà AI = BC (câu b) => AK = AI (4)

Từ (3) và (4) => A là trung điểm của IK (đpcm)

2 tháng 11 2016

còn 1 bài nữa bn giúp mk nhé

soyeon_Tiểubàng giải

29 tháng 11 2016

A B C M N D E 1 2 1 1

Xét \(\Delta DAM\)\(\Delta BAC\) có :

Ma = MB ( gt )

\(\widehat{M_1}=\widehat{M_2}\) ( đối đỉnh )

MA = MC ( gt )

=> \(\Delta DAM\)=\(\Delta BAC\) ( c . g . c)

=> BA = BC , \(\widehat{D_1}=\widehat{C_1}\)

\(\widehat{D_1};\widehat{C_1}\) là 2 góc so le trong

=> AD // BC .

C/m tương tự ta có :

AE = BC ; AE // BC

Dễ thấy : Qua 2 tồn tại 2 đường thẳng cùng song song với BC . Theo tiên đề ơ - clit

=> Hai dường thẳng đó trùng nhau .

=> D ' A ' E thẳng hàng .

Mà DA = AE ( = BC )

=> A là trung điểm của DE

29 tháng 11 2016

Bạn giải cho mình bài kia với