Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M E D H K
Gọi H là trung điểm của BD. K là trung điểm của CE.
M là trung điểm của BC, H là trung điểm của BD => HM // CD (T/c đường trung bình)
Xét tam giác AHM: D là trung điểm của AH, HM // DO => O là trung điểm của AM
=> BE đi qua trung điểm của AM (1)
Tương tự: MK // BE; E là trung điểm của K => O là trung điểm của AM
=> CD đi qua trung điểm của AM (2)
Từ (1) và (2) => AM,BE,CD đồng quy (đpcm)
Gọi Q là trung điểm của DC ; P là trung điểm của BE
+)Gọi O là giao điểm của AM và CE
Ta có : M là trung điểm của BC ; P là trung điểm của BE
\(\implies\) MP là đường trung bình của tam giác BEC
\(\implies\) MP song song với EC
\(\implies\) MP song song với EO
Mà E là trung điểm của AP
\(\implies\) EO là đường trung bình của tam giác APM
\(\implies\) O là trung điểm của AM ( 1 )
+)Gọi O, là giao điểm của AM và BD
Ta có : M là trung điểm của BC ; Q là trung điểm của DC
\(\implies\) MQ là đường trung bình của tam giác BDC
\(\implies\) MQ song song với BD
\(\implies\) MQ song song với O,D
Mà D là trung điểm của AQ
\(\implies\) O,D là đường trung bình của tam giác APQ
\(\implies\) O, là trung điểm của AM ( 2 )
Từ ( 1 ) ; ( 2 )
\(\implies\) O \(\equiv\) O,
\(\implies\) 3 đường thẳng AM ; CE ; BD đồng quy tại 1 điểm
\(\implies\) đpcm
Gọi Q là trung điểm của DC ; P là trung điểm của BE
+)Gọi O là giao điểm của AM và CE
Ta có : M là trung điểm của BC ; P là trung điểm của BE
\(\implies\) MP là đường trung bình của tam giác BEC
\(\implies\) MP song song với EC
\(\implies\) MP song song với EO
Mà E là trung điểm của AP
\(\implies\) EO là đường trung bình của tam giác APM
\(\implies\) O là trung điểm của AM ( 1 )
+)Gọi O, là giao điểm của AM và BD
Ta có : M là trung điểm của BC ; Q là trung điểm của DC
\(\implies\) MQ là đường trung bình của tam giác BDC
\(\implies\) MQ song song với BD
\(\implies\) MQ song song với O,D
Mà D là trung điểm của AQ
\(\implies\) O,D là đường trung bình của tam giác APQ
\(\implies\) O, là trung điểm của AM ( 2 )
Từ ( 1 ) ; ( 2 )
\(\implies\) O \(\equiv\) O,
\(\implies\) 3 đường thẳng AM ; CE ; BD đồng quy tại 1 điểm
\(\implies\) đpcm
1a\(\left(-\frac{3}{4}\right)^4\cdot\left(-\frac{4}{3}\right)^2+\frac{7}{16}\)
\(=\left(-\frac{3}{4}\right)^2+\frac{7}{16}\)
\(=\frac{9}{16}+\frac{7}{16}\)
=1
Gọi K là trung điểm DC ; G là giao điểm AM và BD
tam giác BCD có MK là đtbinh => MK // BD
Tam giác AMK có : D là trung điểm AK và GD// MK
=> G là trung điểm AM => BD đi qua trung điểm AM
CMTT : CE cũng đi qua trung điểm AM
=> đpcm