K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021
xin lũi câu tính S mìnk khum làm đc :Đ
22 tháng 12 2021

ABCHEDF----------

a) Vì E là trung điểm AC; D trung điểm AB (gt)

=> ED là đường tb của tam giác ABC

=> ED//CB;ED=1/2CB

Mà F là trung điểm BC (gt)=>FB=FC=1/2BC

Do đó: ED//FB;ED=1/2FB

Nên tứ giác BDEF là hbh (2 cạnh đối // và = nhau)

b) Nối H với D ta có:

Xét tam giác vuông ABC có DA=DB=1/2AB (D trung đ AB)

=> HD là đường trung tuyến của tam giác ABC (đg trung tuyến ứng vs cạnh huyền)

=>HD=1/2AB

Nên: HD=DB (1)

gọi I nằm giữa D và F

Vì AC//DF và DF=1/2 AC (DF là đg tb;cmt)

=>AE=DF;AE//DF

=>AEFD là hbh (2 cạnh đối // và =nhau)

Mà H thuộc AE thuộc D và I thuộc DF

=> HE//DF=> HEFD là hình thang 

Lại có: đường cao BH=> ^BHC=90o

=> HEFD là hình thang cân

=> ^AEF=90o

=>AEFD là hcn (hbh có 1 góc _|_)

=> ^DFE=90(2)

Từ (1) và (2)=> DF là đường trung trực của ^HDB

=> I trung điểm HB

Nên:H và B đối xứng với nhau qua DF (đpcm)

c) Để BDEF là hcn => hbh BDEF có 1 góc vuông 

=> ^FEC=90o

Mà EA=EC

=>FE là đường trung tuyến của cạnh AC

=>EA=EC=1/2AC

Do đó FD cũng là đường trung tuyến cạnh AB

=>DA=DB=1/2AB

Nên: AC=AB

=> tam giác ABC là tam giác cân tại A

Vậy tam giác ABC là tam giác cân tại A thì BDEF là hcn.

25 tháng 10 2017

A B C H D E F

a) DE là đường trung bình của tam giác nên DE//BC và DE = 1/2 BC = BF

=> BDEF là hình bình hành vì có cặp cạnh đối DE và BF song song và bằng nhau.

b) Tam giác vuông HBA có HD là trung tuấn ứng với cạnh huyền => HD = 1/2 AB = BD

=> Tam giác DBH cân tại D.

c) Điểm G ở đâu hả bạn?

23 tháng 10 2017

a. Xét ∆AHB vuông tại H có HM là đường 

đường trung tuyến ( gt ) nên HM =

2AB( 1 ) 

Trong ∆ABC có N là trung điểm của AC ( gt ) O

và K là trung điểm của BC ( gt ) nên NK là 

đường trung bình của ∆ABC → NK = 2AB(  2 ) B H K C

Từ ( 1 ) & ( 2 ) → HM = NK I

b) Trong ∆AHC vuông tại H có HN là đường trung tuyến ( gt ) nên HN = AC( 3 )

+ ∆ABC có M là trung điểm của AB ( gt ) và K là trung điểm của BC ( gt ) nên MK là 

đường trung bình của ∆ABC → MK = AC ( 4)

Từ ( 3 ) & ( 4 ) → HN = 2MK (a)

+ ∆ABC có M là trung điểm của AB ( gt ) và N là trung điểm của AC ( gt ) nên MN là 

đường trung bình của ∆ABC → MN // BC hay MN // KH 

→ MNKH là hình thang (b). Từ (a) & (b) → MNKH là hình thang cân.

b: Xét ΔABC có 

F là trung điểm của AB

E là trung điểm của AC
Do đó: FE là đường trung bình của ΔABC

Suy ra: FE//BD và FE=BD

hay BDEF là hình bình hành

16 tháng 12 2017

mk hướng dẫn câu a) sử dụng tích chất đường trung bình của tam giác 

\(\Rightarrow DE\)SONG SONG VỚI \(BC\)

MÀ \(BF\)CHÍNH LÀ \(BC\)

\(\Rightarrow DE\)SONG SONG \(BF\)

\(\Rightarrow EF\backslash\backslash BD\)

\(\Rightarrow\) tứ giác \(BDEF\)LÀ HÌNH BÌNH HÀNH

16 tháng 12 2017

a. Xét tam giác ABC có: AD=BD; AE=CE

=> DE là đường trung bình của tam giác ABC => DE//BC; DE=1/2BC

• DE//BC nên DE//BF

• DE=1/2BC và BF=1/2BC nên DE=BF

Xét tứ giác BDEF có: DE//BF; DE=BF

=> BDEF là hbh

b. Xét tam giác ABC có: AD=BD; BF=CF

=> DF là đường tb của tam giác ABC

=> DF//AC; DF=1/2AC

Mà AE=1/2AC nên DF=AE

Xét tứ giác ADEF có DF//AE: DF=AE

=> ADEF là hbh

=> DF=AE (1)

Xét tam giác vuông AKC có KE là đường trung tuyến ứng với cạnh huyền

=> KE=1/2AC=AE (2)

Từ (1) và (2) => DF=KE

Xét tứ giác DEFK có KF//DE=> DEFK là hình thang

Xét hình thang DEFK có DF=KE

=> DEFK là hình thang cân