\(\overrightarrow{AD}=\dfrac{3}{4}\overrightarrow...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2017

A B C D I M
a)
\(\overrightarrow{AI}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AD}\right)=\dfrac{1}{2}\left(\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AC}\right)=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\).
b)
\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{AB}+x\overrightarrow{BC}\)\(=\overrightarrow{AB}+x\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=\left(1-x\right)\overrightarrow{AB}+x\overrightarrow{AC}\).
c) A, M, I thẳng hàng khi và chỉ khi hai véc tơ \(\overrightarrow{AM};\overrightarrow{AI}\) cùng phương
hay \(\dfrac{1-x}{\dfrac{1}{2}}=\dfrac{x}{\dfrac{3}{8}}\Leftrightarrow\dfrac{3}{8}\left(1-x\right)=\dfrac{1}{2}x\)
\(\Leftrightarrow\dfrac{7}{8}x=\dfrac{3}{8}\)\(\Leftrightarrow x=\dfrac{3}{7}\).


19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

Tích vô hướng của hai vectơ và ứng dụng

AH
Akai Haruma
Giáo viên
13 tháng 10 2018

Lời giải:

a)

\(\bullet \overrightarrow{IM}=\frac{1}{2}\overrightarrow{BM}=\frac{1}{2}(\overrightarrow{BA}+\overrightarrow{AM})=\frac{1}{2}(\overrightarrow{BA}+\frac{1}{2}\overrightarrow{AC})\)

\(=-\frac{1}{2}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}\)

\(\bullet \overrightarrow{AI}=\overrightarrow{AM}+\overrightarrow{MI}=\frac{1}{2}\overrightarrow{AC}-\overrightarrow{IM}=\frac{1}{2}\overrightarrow{AC}-(-\frac{1}{2}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC})\)

\(=\frac{1}{2}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}\)

b)

Để \(\overline{A,I,K}\) thì tồn tại \(m\in\mathbb{R}|\overrightarrow{AI}=m\overrightarrow{AK}\)

\(\Leftrightarrow \overrightarrow{AI}=m(\overrightarrow{AB}+\overrightarrow{BK})\)

\(\Leftrightarrow \overrightarrow{AI}=m(\overrightarrow{AB}+x\overrightarrow{BC})\)

\(\Leftrightarrow \overrightarrow{AI}=m\overrightarrow{AB}+mx(\overrightarrow{BA}+\overrightarrow{AC})\)

\(\Leftrightarrow \frac{1}{2}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}=(m-mx)\overrightarrow{AB}+mx\overrightarrow{AC}\)

\(\Rightarrow m-mx=\frac{1}{2}; mx=\frac{1}{4}\Rightarrow m=\frac{3}{4}; x=\frac{1}{3}\)

7 tháng 11 2018

b) giả sử ta có A, I, K thẳng hàng=> ta có tỉ lệ \(\dfrac{AI}{AK}\)(1)

AK= AB+ BK

AK= AB+ xBC

AK= AB+ xBA+ x AC

AK= (1-x) AB+ xAC(2)

mà từ câu a) ta đã tìm được AI= 1/2AB+ 1/4AC(3)

từ (1), (2) và (3)=> \(\dfrac{1}{2-2x}=\dfrac{1}{4x}\)=> x=1/3

23 tháng 7 2019

Bài 1 và Bài 2 tương tự nhau nên mk sẽ chỉ CM bài 1 thôi nha

\(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow\overrightarrow{AB}+\overrightarrow{CD}=0\)

\(\Rightarrow\overrightarrow{AD}+\overrightarrow{DB}+\overrightarrow{CB}+\overrightarrow{BD}=0\)

\(\Leftrightarrow\overrightarrow{AD}+\overrightarrow{CB}=0\Leftrightarrow\overrightarrow{AD}=\overrightarrow{BC}\)

Bài 3:

Xét \(\Delta AIP\) theo quy tắc trung điểm có:

\(\overrightarrow{IC}=\frac{\overrightarrow{IA}+\overrightarrow{IP}}{2}\)

Làm tương tự vs các tam giác còn lại

\(\Rightarrow\overrightarrow{IB}=\frac{\overrightarrow{IN}+\overrightarrow{IC}}{2}\)

\(\Rightarrow\overrightarrow{IA}=\frac{\overrightarrow{IB}+\overrightarrow{IM}}{2}\)

Cộng vế vs vế

\(\Rightarrow\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\frac{\overrightarrow{IA}+\overrightarrow{IP}+\overrightarrow{IN}+\overrightarrow{IC}+\overrightarrow{IB}+\overrightarrow{IM}}{2}\)

\(\Leftrightarrow2\overrightarrow{IA}+2\overrightarrow{IB}+2\overrightarrow{IC}=\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{IM}+\overrightarrow{IN}+\overrightarrow{IP}\)

\(\Leftrightarrow\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{IM}+\overrightarrow{IN}+\overrightarrow{IP}\left(đpcm\right)\)

NV
13 tháng 10 2020

\(\overrightarrow{BM}=\overrightarrow{BC}-2\overrightarrow{AB}\Leftrightarrow\overrightarrow{BI}+\overrightarrow{IM}=\overrightarrow{BC}-2\left(\overrightarrow{AC}+\overrightarrow{CB}\right)\)

\(\Leftrightarrow\frac{1}{2}\overrightarrow{BC}+\overrightarrow{IM}=\overrightarrow{BC}-2\overrightarrow{AC}+2\overrightarrow{BC}\Rightarrow\overrightarrow{IM}=\frac{5}{2}\overrightarrow{BC}-2\overrightarrow{AC}\)

\(\overrightarrow{CI}+\overrightarrow{IN}=x\overrightarrow{AC}-\overrightarrow{BC}\Rightarrow-\frac{1}{2}\overrightarrow{BC}+\overrightarrow{IN}=x\overrightarrow{AC}-\overrightarrow{BC}\)

\(\Rightarrow\overrightarrow{IN}=-\frac{1}{2}\overrightarrow{BC}+x\overrightarrow{AC}=-\frac{1}{5}\left(\frac{5}{2}\overrightarrow{BC}-5x.\overrightarrow{AC}\right)\)

Để MN qua I hay I;M;N thẳng hàng \(\Leftrightarrow5x=2\Rightarrow x=\frac{2}{5}\)

Giúp e những bài này với ạ1) Cho tam giác ABC. GỌI N, H, V là ba điểm thỏa mãn:\(\overrightarrow{NB} \)-2\(\overrightarrow{NC} \)=\(\overrightarrow{0} \)\(2\overrightarrow{HC}+\overrightarrow{HA}=\overrightarrow{0} \)\(\overrightarrow{VA}+\overrightarrow{VB}=\overrightarrow{0} \)b) chứng minh n,h,v thẳng hàng2) Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi G và H lần lượt là trọng tâm và trực tâm của tam giác ABC. Còn M là trung...
Đọc tiếp

Giúp e những bài này với ạ

1) Cho tam giác ABC. GỌI N, H, V là ba điểm thỏa mãn:

\(\overrightarrow{NB} \)-2\(\overrightarrow{NC} \)=\(\overrightarrow{0} \)

\(2\overrightarrow{HC}+\overrightarrow{HA}=\overrightarrow{0} \)

\(\overrightarrow{VA}+\overrightarrow{VB}=\overrightarrow{0} \)

b) chứng minh n,h,v thẳng hàng

2) Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi G và H lần lượt là trọng tâm và trực tâm của tam giác ABC. Còn M là trung điểm BC.

a) so sánh 2 vecto \(\overrightarrow{HA},\overrightarrow{MO} \)

b) Chứng minh rằng :

i) \(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=2\overrightarrow{HO} \)

ii)\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=3\overrightarrow{OG} \)

3)Cho tam giác ABC và một điểm M thỏa mãn hệ thức \(\overrightarrow{BM}=2\overrightarrow{MC} \). Gọi BN là trung tuyến của tam giác ABC và I là trung điểm BN.

Chứng Minh a)\(2\overrightarrow{MB}+\overrightarrow{MA}+\overrightarrow{MC}=4\overrightarrow{MI} \)

b) \(\overrightarrow{AI}+\overrightarrow{BM}+\overrightarrow{CN}=\overrightarrow{CI}+\overrightarrow{BN}+\overrightarrow{AM} \)

4)Cho tam giác ABC, , lấy các điểm M, N, P sao cho \(\overrightarrow{MA}+3\overrightarrow{MB}=6\overrightarrow{NP}-\overrightarrow{NC}=\overrightarrow{PC}+2\overrightarrow{PA}=\overrightarrow{0} \)

a) Biểu diễn \(\overrightarrow{AN} \) qua \(\overrightarrow{AM} \) và \(\overrightarrow{AP} \)

b)Chứng minh M,N,P thẳng hàng

 

0
NV
17 tháng 11 2018

\(\overrightarrow{AD}=2\overrightarrow{DB}\Rightarrow\overrightarrow{AD}=\dfrac{2}{3}\overrightarrow{AB}\) ; \(\overrightarrow{CE}=3\overrightarrow{EA}\Rightarrow\overrightarrow{AE}=\dfrac{1}{4}\overrightarrow{AC}\)

Lại có M là trung điểm DE

\(\Rightarrow\overrightarrow{AM}=\dfrac{1}{2}\left(\overrightarrow{AD}+\overrightarrow{AE}\right)=\dfrac{1}{2}\left(\dfrac{2}{3}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}\right)=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{8}\overrightarrow{AC}\)

I là trung điểm BC \(\Rightarrow\overrightarrow{AI}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)

\(\Rightarrow\overrightarrow{MI}=\overrightarrow{MA}+\overrightarrow{AI}=\overrightarrow{AI}-\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}-\dfrac{1}{3}\overrightarrow{AB}-\dfrac{1}{8}\overrightarrow{AC}=\dfrac{1}{6}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\)

17 tháng 11 2018

cảm ơn bạn <3