Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy ngay tam giác MAE và tam giác MEC có chung chiều cao hạ từ M xuống AC, EC = 4AE nên \(S_{MEC}=4S_{MAE}=4\times20=80\left(cm^2\right)\)
b) Ta thấy tam giác MBD và tam giác MCD có chung chiều cao và đáy BD = DC nên \(S_{MBD}=S_{MCD}\)
Ta thấy tam giác EBD và tam giác ECD có chung chiều cao và đáy BD = DC nên \(S_{EBD}=S_{ECD}\)
Vậy nên \(S_{MBE}=S_{MEC}=80\left(cm^2\right)\)
Ta có \(\frac{S_{AME}}{S_{MEC}}=\frac{1}{4};\frac{S_{ABE}}{S_{EBC}}=\frac{1}{4}\Rightarrow\frac{S_{AME}+S_{ABE}}{S_{MEC}+S_{EBC}}=\frac{1}{4}\Rightarrow\frac{S_{MBE}}{S_{MEBC}}=\frac{1}{4}\)
\(\Rightarrow S_{MEBC}=4.80=320\left(cm^2\right)\)
\(\Rightarrow S_{MBC}=320+80=400\left(cm^2\right)\)
\(\Rightarrow S_{ABC}=400-20-80=300\left(cm^2\right)\)
Cho tam giác ABC. Gọi D là điểm chính giữa của cạnh BC. Lấy E trên cạnh AC sao cho AE bằng 1/5 AC. Nối D với E. Kéo dài DE cắt AB kéo dài tại M. Nối M với C. Biết diện tích AME bằng 20 cm2 .Tính diện tích MEC và ABC?
Được cập nhật 22 tháng 5 2019 lúc 20:10
4
Hoàng Thị Thu Huyền Quản lý
7 tháng 3 2018 lúc 10:05
a) Ta thấy ngay tam giác MAE và tam giác MEC có chung chiều cao hạ từ M xuống AC, EC = 4AE nên SMEC=4SMAE=4×20=80(cm2)
b) Ta thấy tam giác MBD và tam giác MCD có chung chiều cao và đáy BD = DC nên SMBD=SMCD
Ta thấy tam giác EBD và tam giác ECD có chung chiều cao và đáy BD = DC nên SEBD=SECD
Vậy nên SMBE=SMEC=80(cm2)
A B C D E 4cm
a) Xét \(\Delta AED\)và \(\Delta ABD\)có chung đường cao hạ từ D xuống cạnh đáy AB
Mà \(AE=\frac{2}{3}AB\Rightarrow S_{\Delta AED}=\frac{2}{3}S_{\Delta ABD}\)
\(\Rightarrow S_{\Delta ABD}=\frac{3}{2}S_{\Delta AED}=\frac{3}{2}\times4=6\left(cm^2\right)\)
Xét \(\Delta ABD\)và \(\Delta ABC\)có chung đường cao hạ từ B xuống cạnh đáy AC
Mà \(AD=\frac{1}{3}AC\Rightarrow S_{\Delta ABD}=\frac{1}{3}S_{\Delta ABC}\)
\(\Rightarrow S_{\Delta ABC}=3S_{\Delta ABD}=3\times6=18\left(cm^2\right)\)
Vậy ...
Kẻ MK vuông góc AC
\(S_{AME}=\dfrac{1}{2}\cdot MK\cdot AE\)
\(S_{MEC}=\dfrac{1}{2}\cdot MK\cdot EC\)
mà AE=1/4*EC
nên \(S_{AME}=\dfrac{1}{4}\cdot S_{MEC}\)
=>\(S_{MEC}=80\left(cm^2\right)\)
Xét tam giác BMN và MNC
đáy BM = MC
chung chiều cao hạ từ N xuống hai đáy
\Rightarrow S BMN = S MNC
\Rightarrow chiều cao hạ từ B và C xuồng dấy MN bằng nhau
xét tam giác PBN và PCN có chung dấy nc
chiều cao hạ từ B và C xuống PN bằng nhau
\Rightarrow S PBN =S PCN =45
mà S BPN = S APN + S ANB =45
\Rightarrow S ANB =45-S APN=45-15=30(cm2)
Xét 2 tam giác ABC và ANB
+đáy AC=4 AN
+chung chiều cao hạ từ B xuống AC
\Rightarrow ABC = 4ANB
\Rightarrow SABC=4x30=120(cm2)
vậy SABC=120 cm2
\(S_{AME}=\frac{1}{4}S_{MEC}\)
- Chung cao hạ từ M xuống AC
- Đáy AE = 1/4 EC
\(S_{MEC}=20\cdot4=80\left(cm^2\right)\)
Em tham khảo tại đây nhé.
Câu hỏi của Minh An Nguyễn - Toán lớp 5 - Học toán với OnlineMath