">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2019

a)cm  tam giác AFC  đồng dạng  tam giác AEB(gg) 

=> tam giác AFE đồng dạng ACB(cgc) . từ đó suy ra đpcm

b) tam giác BDH đồng dạng tam giác BEC (gg) 

=> BH/BC =BD/BE hay BH .BE =BD.BC (1)

                                   t^2 CH.CF=DC.BC (2)

lấy (1)+(2) theo vế suy ra đpcm

c)tam giác AFE đd tam giác ACB ( câu a) => góc AEF = góc C 

t^2 tam giác DEC đd tam giác ABC => góc DEC= góc C

Do đó góc AEF= góc DEC 

mà góc AEF+góc FEB=90 ; góc DEC+BED =90 

 => góc FEB= góc BED 

 suy ra đpcm ................... (x-x)

25 tháng 1 2020

Khai bút thoi nào,hy vọng năm mới nhiều may mắn  :)

Ký hiệu như hình vẽ nhá :)

Áp dụng định lý đường phân giác ta có:

\(\frac{CE}{CA}=\frac{BC}{AB}=\frac{a}{c}\Rightarrow\frac{CE}{CA+CE}=\frac{a}{a+c}\Rightarrow\frac{CE}{b}=\frac{a}{a+c}\Rightarrow CE=\frac{ab}{a+c}\)

Áp dụng định lý đường phân giác lần nữa:

\(\frac{BO}{OE}=\frac{BC}{CE}=a\cdot\frac{a+c}{ab}=\frac{a+c}{b}\Rightarrow\frac{BO}{OE+OB}=\frac{a+c}{a+b+c}=\frac{BO}{BE}\)

Chứng minh tương tự:\(\frac{CO}{CF}=\frac{a+b}{a+b+c}\)

Mà \(\frac{BO}{BE}\cdot\frac{CO}{CF}=\frac{1}{2}\) nên \(\frac{a+c}{a+b+c}\cdot\frac{a+b}{a+b+c}=\frac{1}{2}\Rightarrow\frac{\left(a+c\right)\left(a+b\right)}{\left(a+b+c\right)^2}=\frac{1}{2}\)

\(\Rightarrow2a^2+2ab+2ac+2cb=a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Rightarrow a^2=b^2+c^2\)

=> đpcm

25 tháng 1 2020

zZz Cool Kid_new zZz olm giờ nát vậy sao em :(

1 tháng 5 2021

Kết quả hình ảnh cho Cho tam giác ABC nhọn, các đường cao AD,BE, CF cắt nhau tại H (D thuộc BC, E thuộc AC, F thuộc AB).a) chứng minhHD/AD

Đây nhé

Vào TK mk nhá ! Nguồn h o c 2 4 270264

Ôn tập chương II - Đa giác. Diện tích đa giác

Ôn tập chương II - Đa giác. Diện tích đa giác

Ôn tập chương II - Đa giác. Diện tích đa giác

9 tháng 6 2021

bạn ơi góc HEC có vuông đâu