Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)cm tam giác AFC đồng dạng tam giác AEB(gg)
=> tam giác AFE đồng dạng ACB(cgc) . từ đó suy ra đpcm
b) tam giác BDH đồng dạng tam giác BEC (gg)
=> BH/BC =BD/BE hay BH .BE =BD.BC (1)
t^2 CH.CF=DC.BC (2)
lấy (1)+(2) theo vế suy ra đpcm
c)tam giác AFE đd tam giác ACB ( câu a) => góc AEF = góc C
t^2 tam giác DEC đd tam giác ABC => góc DEC= góc C
Do đó góc AEF= góc DEC
mà góc AEF+góc FEB=90 ; góc DEC+BED =90
=> góc FEB= góc BED
suy ra đpcm ................... (x-x)

Khai bút thoi nào,hy vọng năm mới nhiều may mắn :)
Ký hiệu như hình vẽ nhá :)
Áp dụng định lý đường phân giác ta có:
\(\frac{CE}{CA}=\frac{BC}{AB}=\frac{a}{c}\Rightarrow\frac{CE}{CA+CE}=\frac{a}{a+c}\Rightarrow\frac{CE}{b}=\frac{a}{a+c}\Rightarrow CE=\frac{ab}{a+c}\)
Áp dụng định lý đường phân giác lần nữa:
\(\frac{BO}{OE}=\frac{BC}{CE}=a\cdot\frac{a+c}{ab}=\frac{a+c}{b}\Rightarrow\frac{BO}{OE+OB}=\frac{a+c}{a+b+c}=\frac{BO}{BE}\)
Chứng minh tương tự:\(\frac{CO}{CF}=\frac{a+b}{a+b+c}\)
Mà \(\frac{BO}{BE}\cdot\frac{CO}{CF}=\frac{1}{2}\) nên \(\frac{a+c}{a+b+c}\cdot\frac{a+b}{a+b+c}=\frac{1}{2}\Rightarrow\frac{\left(a+c\right)\left(a+b\right)}{\left(a+b+c\right)^2}=\frac{1}{2}\)
\(\Rightarrow2a^2+2ab+2ac+2cb=a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Rightarrow a^2=b^2+c^2\)
=> đpcm