\(ABC\) (\(gócA\ne B\)). Các tia phân giác trong...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8

Kết quả:

\(\angle C E D = \frac{\mid A - B \mid}{2} .\)

Giải nhanh: Gọi \(C = 180^{\circ} - A - B\). Vì \(C E\) là tia phân giác góc ngoài tại \(C\), nên nó tạo với \(C A\) một góc

\(\hat{\left(\right. C E , C A \left.\right)} = 90^{\circ} - \frac{C}{2} .\)

Qua \(E\) kẻ đường thẳng song song với \(C A\); đường này tạo với \(A B\) một góc bằng \(A\). Do đó góc giữa \(C E\)\(A B\) (chính là \(\angle C E D\)) bằng

\(\mid \textrm{ } A - \left(\right. 90^{\circ} - \frac{C}{2} \left.\right) \mid .\)

Thay \(C = 180^{\circ} - A - B\) vào, ta có \(90^{\circ} - \frac{C}{2} = \frac{A + B}{2}\). Suy ra

\(\angle C E D = \mid A - \frac{A + B}{2} \mid = \frac{\mid A - B \mid}{2} .\)

(Với quy ước lấy góc nhọn tại \(E\); nếu \(A \geq B\) thì \(\angle C E D = \frac{A - B}{2}\), còn nếu \(A < B\) thì \(\angle C E D = \frac{B - A}{2}\).)

Vì CD và CE là hai tia phân giác của hai góc kề bù

nên CD⊥CE

=>ΔDCE vuông tại C

Xét ΔADC có \(\hat{BDC}\) là góc ngoài tại đỉnh D

nên \(\hat{BDC}=\hat{DAC}+\hat{DCA}=\hat{BAC}+\frac12\cdot\hat{ACB}\)

\(=\hat{BAC}+\frac12\left(180^0-\hat{BAC}-\hat{ABC}\right)=90^0+\frac12\cdot\hat{BAC}-\frac12\cdot\hat{ABC}\)

Xét ΔDCE vuông tại C có \(\hat{CDE}+\hat{CED}=90^0\)

=>\(\hat{CED}=90^0-\left(90^0+\frac12\cdot\hat{BAC}-\frac12\cdot\hat{ABC}\right)=-\frac12\cdot\hat{BAC}+\frac12\cdot\hat{ABC}\)

6 tháng 8 2018

Mình cũng chưa làm được bài này

29 tháng 11 2017

Bạn tham khảo ở đây:

Câu hỏi của Nguyễn Khánh Ngân - Toán lớp 7 - Học toán với OnlineMath

28 tháng 7 2019

Link nek:

Câu hỏi của Nguyễn Khánh Ngân - Toán lớp 7 - Học toán với OnlineMath

Bn tham khảo ở đây nha 

~ Rất vui vì giúp đc bn ~

22 tháng 8 2017

mik vẽ hình rồi nha.

bn nhìn hình mà làm

dài phết đấy

bn xét trường hợp nữa nha

22 tháng 8 2017

Cho tam giác ABC có góc A khác góc B. Các tia phân giác trong và ngoài của góc C lần lượt cắt BA tại D và E. Tính CED theo góc ABC.

Cho tam giác ABC có góc A khác góc B. Các tia phân giác trong và ngoài của góc C lần lượt cắt BA tại D và E. Tính CED theo góc ABC.

Cho tam giác ABC có góc A khác góc B. Các tia phân giác trong và ngoài của góc C lần lượt cắt BA tại D và E. Tính CED theo góc ABC.

Cho tam giác ABC có góc A khác góc B. Các tia phân giác trong và ngoài của góc C lần lượt cắt BA tại D và E. Tính CED theo góc ABC.

Cho tam giác ABC có góc A khác góc B. Các tia phân giác trong và ngoài của góc C lần lượt cắt BA tại D và E. Tính CED theo góc ABC.

Cho tam giác ABC có góc A khác góc B. Các tia phân giác trong và ngoài của góc C lần lượt cắt BA tại D và E. Tính CED theo góc ABC

.