Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì HD vuông góc với AB
=> HDB = HDA = 90 độ
Mà BAC = 90 độ (gt)
=> BAC = BDH = 90 độ
Mà 2 góc này ở vị trí đồng vị
=> DH //AE
=> DHEA là hình thang
Mà HE vuông góc với AC
=> HEA = 90 độ
=> HEA = BAC = 90 độ
=> DHEA là hình thang cân
=> DE = AH ( hình thang cân hai đường chéo bằng nhau)
=> dpcm
a) Tứ giác ADHE là hình chữ nhật vì có 3 góc vuông \(\widehat{A}\)= \(\widehat{D}\)=\(\widehat{E}\)= 900
b) Tứ giác ADHE là hình chữ nhật nên DE = AH
Ap dụng định lý Pytago vào tam giác vuông ABH ta có:
AH2 + BH2 = AB2
\(\Rightarrow\)AH2 = AB2 - BH2
\(\Rightarrow\)AH2 = 102 - 62 = 64
\(\Rightarrow\)AH = \(\sqrt{64}\)= 8
Vì AH = DE nên DE = 8cm
Bài 1:
a: Ta có: ΔBKC vuông tại K
mà KM là đường trung tuyến
nên KM=BC/2(1)
Ta có: ΔBHC vuông tại H
mà HM là đường trung tuyến
nên HM=BC/2(2)
Từ (1)và (2) suy ra MH=MK
hay ΔMHK cân tại M
b: Kẻ MN vuông góc với HK
=>N là trung điểm của HK
Xét hình thang CBDE có
M là trung điểm của BC
MN//DB//EC
DO đó: N là trung điểm của DE
=>DK=HE
Bạn tự vẽ hình. Gợi ý:
- Chứng minh tứ giác AEHF là hình chữ nhật.
*Gọi K là giao điểm của AH và EF. Khi đó K là trung điểm AH.
- Chứng minh tam giác AHM cân tại A. Suy ra \(\widehat{MAB}=\widehat{HAB}\)
Mặt khác \(\widehat{HAB}=\widehat{ABI}\) (BI//AH) \(\Rightarrow\widehat{MAB}=\widehat{ABI}\)
\(\Rightarrow\)△ABI cân tại I nên AI=BI.
*CA cắt BI tại S. Chứng minh I là trung điểm BS.
Đến đây bài toán đã trở nên đơn giản hơn (chỉ chú ý vào các điểm C,A,H,B,S và K).
- CK cắt BS tại I'. Khi đó ta cũng c/m được I' là trung điểm BS.
\(\Rightarrow I\equiv I'\) nên C,K,I thẳng hàng.
Suy ra đpcm.
Xét tứ giác ADHE có :
\(\widehat{A}\)=\(\widehat{B}\)=\(\widehat{C}\)=\(\widehat{D}\)(Vì cùng =90\(^{0^{ }}\))
=) Tứ giác ADHE là hình chữ nhật
=) AH=DE (tính chất 2 đường chéo bằng nhau)
( Hình bạn tự vẽ nha)
a)
Vì D là chân đường vuông góc kẻ từ H=> HDA = 90
Vì E là chân đường vuông góc kẻ từ H=> HEA = 90
Xét tứ giác DHEA có
BAC=90 (gt)
HDA=90 (cmt) => Tứ giác DHEA là hình chữ nhật (dhnb)
HEA=90(cmt)
=> DE= AH ( t/c hcn)
b)
Vì N là trung điểm của HC (gt)
mà tam giác HEC là tam giác vuông ( HE vg góc AC)
=> EN là đường trung tuyến của tam giác HEC vuông tại E => EN= 1/2 HC= HN=HC (định lí)
Vì HN= EN (cmt) => Tam giác HEN là tam giác cân tại N
=> HEN= NHE (1)
Vì AH=DE(cmt) mà AH giao DE tại O=> O là trung điểm AH và DE
=> OH=OE => Tam giác HOE cân tại O (đ/ n)
=> OHE= HEO ( t/c) (2)
Từ (1) và (2)=> EHO+ NHE= OEH+HEN
\(\Leftrightarrow\) OHN = OEN= 90 (AH là đườngcao)
=> DMNE là hình thang vuông(dhnb hình thang vuông)
Cảm ơn bạn nhiều lắm !