K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔBAD và ΔBED có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔBAD=ΔBED(c-g-c)

a) Ta có: ΔBAD=ΔBED(cmt)

nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(gt)

nên \(\widehat{BED}=90^0\)

hay DE\(\perp\)BE(đpcm)

13 tháng 6 2020

A)XÉT \(\Delta ABD\)\(\Delta HBD\)

\(\widehat{BAD}=\widehat{BHD}=90^o\)

\(\widehat{ABD}=\widehat{DBH}\left(GT\right)\)

BD LÀ CẠNH CHUNG

=>\(\Delta ABD\)=\(\Delta HBD\)(CẠNH HUYỀN - GÓC NHỌN ) ( ĐPCM)

GỌI I LÀ GIAO ĐIỂM CỦA BD VÀ AH

XÉT \(\Delta ABI\)\(\Delta HBI\)

\(AB=BH\left(\Delta ABD=\Delta HBD\right)\)

\(\widehat{ABD}=\widehat{DBH}\left(GT\right)\)

BI LÀ CẠNH CHUNG

=>\(\Delta ABI\)=\(\Delta HBI\)(C-G-C)

\(\Rightarrow\widehat{AIB}=\widehat{HIB}\)( HAI GÓC TƯƠNG ỨNG)

MÀ HAI GÓC NÀY KỀ BÙ 

\(\Rightarrow\widehat{AIB}=\widehat{HIB}=\frac{180^o}{2}=90^o\left(1\right)\)

\(\Delta ABI\)=\(\Delta HBI\)(C-G-C)

=> AI=HI( HAI CẠNH TƯƠNG ỨNG ) (2)

TỪ 1 VÀ 2 => BI LÀ ĐƯỜNG TRUNG TRỰC CỦA AH HAY BD LÀ ĐƯỜNG TRUNG TRỰC CỦA AH(ĐPCM)

B)

b)  

Vì  \(\Delta\)DBA =\(\Delta\) DBH ( cm ở câu a )

=) AD = DH 

Xét\(\Delta\)DHC ( DHC = 90 ) có :

DC là cạnh huyền 

\(\Rightarrow\) DC là cạnh lớn nhất 

\(\Rightarrow DC>DH\)

mà DH = AD

\(\Rightarrow AD< DC\)

13 tháng 6 2020

a, Xét △ABD vuông tại A và △HBD vuông tại H

Có: BD là cạnh chung

       ABD = HBD (gt)

=> △ABD = △HBD (ch-gn)

=> AB = BH (2 cạnh tương ứng) => B thuộc đường trung trực của AH

và AD = HD (2 cạnh tương ứng) => D thuộc đường trung trực của AH

=> BD là đường trung trực của AH

b, Xét △HDC vuông tại H có: DC > DH (quan hệ giữa đường xiên và đường vuông góc)

=> DC > AD

7 tháng 5 2015

a, cm tam giac BAD=tam giac BED( c.g.c)\(\Rightarrow\)Góc BAD= Góc BED( góc tuong ứng)\(\Rightarrow\)BED= 90o\(\Rightarrow\)DE vuong BE

 

- BA=BE(gt) 

- chung AD

- góc ABD= góc EBD( BD lf tia P.g)

b,xét tam giác BAE có BA=BE(Gt)

\(\Rightarrow\)tam giac BAE Cân tại B

Mà BD là dường phân giác

\(\Rightarrow\)BD đồng thời là đường trung trực của AE

Mới làm dk 2fan nay

7 tháng 5 2017

Kẻ EK vuông góc với DC
Do AH//DC ( vì cùng vuông góc với BC)
nên góc HAE bằng góc DEA( slt)
mà góc DAE bằng góc DEA( Do tam giác ADE có DA=DE nên Tam giác ADE cân tại D)
suy ra góc HAE bằng góc DAE
xét tam giác HAE và tam giác KAE:
.AE là cạnh huyền chung
.góc HAE bằng góc DAE
suy ra :tam giác HAE = tam giác KAE( ch-gn)
suy ra EH=EK (1)
Ta lại có  tam giác EKC vuông tại K nên:
EK<EC( cạnh góc vuông bé hơn cạnh huyền) (2)
Từ (1) và (2) suy ra EH<EC

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

b: ta có: ΔBAD=ΔBED

=>AB=BE và DA=DE

Ta có: BA=BE

=>B nằm trên đường trung trực của AE(1)

ta có: DA=DE

=>D nằm trên đường trung trực của AE(2)

Từ (1),(2) suy ra BD là đường trung trực của AE

c: ta có: \(\widehat{BIH}=\widehat{AID}\)(hai góc đối đỉnh)

\(\widehat{BIH}+\widehat{IBH}=90^0\)(ΔHBI vuông tại H)

Do đó: \(\widehat{AID}+\widehat{DBC}=90^0\)

Ta có: \(\widehat{AID}+\widehat{DBC}=90^0\)

\(\widehat{ADI}+\widehat{ABD}=90^0\)(ΔABD vuông tại A)

mà \(\widehat{DBC}=\widehat{ABD}\)

nên \(\widehat{ADI}=\widehat{AID}\)

=>ΔADI cân tại A

 

a: BC=5cm

b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có 

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

Suy ra: BA=BH

c: \(\widehat{MAH}+\widehat{BHA}=90^0\)

\(\widehat{CAH}+\widehat{BAH}=90^0\)

mà \(\widehat{BHA}=\widehat{BAH}\)

nên \(\widehat{MAH}=\widehat{CAH}\)

hay AH là tia phân giác của góc MAC

15 tháng 5 2022

mọi người giúp mình câu d với ạ ,mình sắp thi rùi ạ 

 

18 tháng 5 2022

Tham khảo

a: BC=5cm

b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có 

BD chung

ˆABD=ˆHBD

Do đó: ΔBAD=ΔBHD

Suy ra: BA=BH

c: ˆMAH+ˆBHA=900

ˆCAH+ˆBAH=900

mà ˆBHA=ˆBAH

nên ˆMAH=ˆCAH

hay AH là tia phân giác của góc MAC

18 tháng 5 2022

lỗi kìa e :>

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

1
29 tháng 4 2016

5 )

tự vẽ hình nha bạn 

a)

Xét tam giác ABM và tam giác ACM  có :

AM  cạnh chung 

AB = AC (gt)

BM = CM  (gt)

suy ra : tam giác ABM = tam giác ACM ( c-c-c)

suy ra : góc BAM =  góc CAM  ( 2 góc tương ứng )

Hay AM  là tia phân giác của góc A

b)

Xét tam giác ABD  và tam giác ACD có :

AD cạnh chung 

góc BAM  = góc CAM ( c/m câu a)

AB = AC (gt)

suy ra tam giác ABD  = tam giác ACD ( c-g-c)

suy ra : BD = CD ( 2 cạnh tương ứng)  

C) hay tam giác BDC cân tại D