Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình đã làm lâu rồi nhưng Online Math lỗi nên mình phải cắt, ghép vào paint cho bạn.
Lấy D ∈ AE sao cho AD = AC => DE = AB và ∆DAC đều
Xét ∆ABC và ∆DEC có:
+ AB = DE
+ góc BAC = góc EDC = 120º (bạn tự chứng minh)
+ AD = DC
=> ∆ABC = ∆DEC(c.g.c) => BC = EC và góc ACB = góc DCE
=> góc ACB + góc BCD = góc DCE + góc BCD
=> góc ECB = góc ACD = 60º
Xét ∆BEC có BC = EC và góc ECB = 60º => ∆BEC là tam giác cân có 1 góc = 60º
=> ∆BEC là tam giác đều.
Trên tia AE lấy AD = AB \(\Rightarrow\)DE = AC
\(\Delta ABD\)cân có \(\widehat{BAD}=60^O\)nên là tam giác đều, suy ra AD = DB
\(\Delta DBE=\Delta ABC\)( c.g.c ) \(\Rightarrow\)\(\widehat{B_1}=\widehat{B_2}\)và BE = BC.
Ta lại có : \(\widehat{B_1}+\widehat{B_3}=60^o\)nên \(\widehat{B_2}+\widehat{B_3}=60^o\)
\(\Delta BCE\)cân ở B có \(\widehat{CBE}=60^o\)nên là tam giác đều
a) Xét tam giác ABD có :
AB = AD (gt)
Suy ra tam giác ABD cân tại BAD
Suy ra góc ABD = góc ADB ( 2 góc đáy)
Ta có : góc BAD + góc CAD = góc BAC
mà góc BAC = 120 độ ; góc BAD =góc CAD (gt)
Suy ra 2BAD= 120 độ
Suy ra BAD= 120 độ chia 2
Suy ra BAD =60 độ
Ta lại có tam giác BAD cân tại BAD
Suy ra BDA =DBA =(180 độ - BAD) chia 2
mà BAD = 60 độ
Suy ra BDA=DBA= (180 độ - 60 độ ) chia 2
Suy ra BDA=DBA = 60độ
Xét tam giác BDA có
BDA=DBA=BAD=60 độ
Suy ra tam giác BDA đều
Cho tam giác ABC có góc A = 120o . Trên tia p/g góc A lấy E sao cho AE = AB+AC . CM tam giác BCE đều
M A B C E
Trên AE lấy điểm M sao cho MA = AC => ME = AB (*)
Xét \(\Delta\text{ABC}\)và \(\Delta\text{MEC}\)có :
AB = ME (CMT)
Ta có : AC = AM
\(\widehat{\text{MAC}}=60^o\)
=> \(\Delta CMA\)đều => CA = CM = AM
=> \(\widehat{CMA}=60^o\)
=> \(\widehat{ACM}=60^o\)
Mặt khác \(\widehat{CMA}+\widehat{CME}=180^o\)
=> \(\widehat{CME}=120^o\)
=> \(\widehat{CME}=\widehat{BAC}\)
CA = MC
=> \(\Delta ABC=\Delta MEC\left(c.g.c\right)\)
=> BC = EC (1)
=> \(\widehat{ACB}=\widehat{MCE}\)
Mặt khác \(\widehat{ACB}+\widehat{BCM}=60^o\)
\(\Rightarrow\widehat{MCE}+\widehat{BCM}=60^o\)
\(\Rightarrow\widehat{BCE}=60^o\) (2)
Từ (1) và (2) => \(\Delta BCE\)\(\text{đều}\)
Ta có \(\widehat{BAC}=120^o\Rightarrow\widehat{BAD}=\widehat{DAC}=60^o\)
Xét tam giác ABD có AB = AD và \(\widehat{BAD}=60^o\) nên tam giác ABD đều.
Vậy thì \(\widehat{BDA}=60^o\Rightarrow\widehat{BDE}=180^o-60^o=120^o=\widehat{BAC}\)
Ta có AE = AB + AC = AD + AC
Mà AE = AD + DE nên DE = AC
Xét tam giác BAC và BDE có:
BA = BD (Do tam giác ABD đều)
AC = DE
\(\widehat{BAC}=\widehat{BDE}\)
\(\Rightarrow\Delta BAC=\Delta BDE\left(c-g-c\right)\)
\(\Rightarrow BC=BE\)
và \(\widehat{ABC}=\widehat{DBE}\Rightarrow\widehat{DBE}+\widehat{CBD}=\widehat{ABC}+\widehat{CBD}=\widehat{ABD}=60^o\)
Vậy tam giác BCE có BC = BE nên nó là tam giác cân.
Lại có \(\widehat{CBE}=60^o\) nên BCE là tam giác đều.
CÂU a, Vì có góc BAD = 60 độ (1)
AD=AB (2)
Từ 1, 2 nên tan giac ABD la tam gac đều
CÂU b; Xét hya tam gac ta co
AB=BD(DPCM)
DE=AC(GT)
BDE=BAC (=120)
nên hai tam giac bang nhau