K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2023

a: BM là phân giác của góc ABC

=>\(\widehat{ABM}=\widehat{MBC}=\dfrac{\widehat{ABC}}{2}\)

CM là phân giác của góc ACB

=>\(\widehat{ACM}=\widehat{MCB}=\dfrac{\widehat{ACB}}{2}\)

Xét ΔMBC có \(\widehat{MBC}+\widehat{MCB}+\widehat{BMC}=180^0\)

=>\(\widehat{BMC}+\dfrac{\widehat{ABC}+\widehat{ACB}}{2}=180^0\)

=>\(\widehat{BMC}+\dfrac{180^0-\widehat{BAC}}{2}=180^0\)

=>\(\widehat{BMC}+\dfrac{180^0-a}{2}=180^0\)

=>\(\widehat{BMC}=180^0-90^0+\dfrac{a}{2}=\dfrac{a}{2}+90^0\)

Vì BM,BN lần lượt là phân giác trong và phân giác ngoài tại đỉnh B của ΔABC nên BM\(\perp\)BN

=>\(\widehat{MBN}=90^0\)

Vì CM,CN lần lượt là phân giác trong và phân giác ngoài tại đỉnh C của ΔABC nên CM\(\perp\)CN

=>\(\widehat{MCN}=90^0\)

Xét tứ giác BMCN có \(\widehat{BMC}+\widehat{BNC}+\widehat{MBN}+\widehat{MCN}=360^0\)

=>\(\widehat{BNC}+90^0+\dfrac{a}{2}+90^0+90^0=360^0\)

=>\(\widehat{BNC}=90^0-\dfrac{a}{2}\)

b: Xét tứ giác BMCN có \(\widehat{MBN}+\widehat{MCN}=90^0+90^0=180^0\)

nên BMCN là tứ giác nội tiếp đường tròn đường kính MN

=>B,M,C,N cùng thuộc đường tròn tâm O đường kính MN

Tâm O là trung điểm của MN

 

5 tháng 6 2021

Bài này khá căn bản thôi do tam giác ABC đều

`=>hatA=hatB=hatC=60^o`

`\hat{BOC}` là góc ở tâm nên gấp 2 lần góc nội tiếp

`=>hat{BOC}=2hatA=120^o`

Vì `hat{OBM}=hat{OCM}=90^o`(do các tt lần lượt lại B,C)

`hat{BOC}+hat{OBM}+hat{OCM}+hat{BMC}=360^o`( đây là tứ giác)

`=>hat{BMC}=360^o-(hat{BOC}+hat{OBM}+hat{OCM}+hat{BMC})=60^o`

5 tháng 6 2021

ΔABC đều ⇒∠A=∠B=∠C=60

⇒∠BOC=2∠A=2.60=120

mà ∠BOC+∠BMC=180 (∠B=∠C=90)

⇒∠BMC=180-∠BOC=180-120=60

⇒∠BMC=60

 

17 tháng 2 2020

A B M C O D

vẽ trên máy nên k dc chính xác

a, Ta có: góc BAM = góc CAM (gt)

=> \(\widebat{BM}=\widebat{CM}\) (2 góc nội tiếp bằng nhau chắn 2 cung bằng nhau)

=>BM = CM (liên hệ giữa cung và dây)

=>t/g BMC cân tại M

b, Ta có: góc AMB = góc ACB (2 góc nội tiếp cùng chắn 1 cung)

góc AMC = góc ABC (2 góc nội tiếp cùng chắn 1 cung)

=> góc AMB + góc AMC = góc ACB + góc ABC

hay góc BMC = góc ABC + góc ACB (đpcm)

c, Xét t/g ABD và t/g AMC

góc BAD = góc MAC (gt)

góc ABD = góc AMC (c/m câu b)

=>t/g ABD đồng dạng vs t/g AMC (g.g)

=>AB/AD = AM/AC => AB.AC=AD.AM (đpcm)

18 tháng 2 2020

ủa câu b đâu có c/m góc ABD bằng góc AMC đâu???

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em