Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BM là phân giác của góc ABC
=>\(\widehat{ABM}=\widehat{MBC}=\dfrac{\widehat{ABC}}{2}\)
CM là phân giác của góc ACB
=>\(\widehat{ACM}=\widehat{MCB}=\dfrac{\widehat{ACB}}{2}\)
Xét ΔMBC có \(\widehat{MBC}+\widehat{MCB}+\widehat{BMC}=180^0\)
=>\(\widehat{BMC}+\dfrac{\widehat{ABC}+\widehat{ACB}}{2}=180^0\)
=>\(\widehat{BMC}+\dfrac{180^0-\widehat{BAC}}{2}=180^0\)
=>\(\widehat{BMC}+\dfrac{180^0-a}{2}=180^0\)
=>\(\widehat{BMC}=180^0-90^0+\dfrac{a}{2}=\dfrac{a}{2}+90^0\)
Vì BM,BN lần lượt là phân giác trong và phân giác ngoài tại đỉnh B của ΔABC nên BM\(\perp\)BN
=>\(\widehat{MBN}=90^0\)
Vì CM,CN lần lượt là phân giác trong và phân giác ngoài tại đỉnh C của ΔABC nên CM\(\perp\)CN
=>\(\widehat{MCN}=90^0\)
Xét tứ giác BMCN có \(\widehat{BMC}+\widehat{BNC}+\widehat{MBN}+\widehat{MCN}=360^0\)
=>\(\widehat{BNC}+90^0+\dfrac{a}{2}+90^0+90^0=360^0\)
=>\(\widehat{BNC}=90^0-\dfrac{a}{2}\)
b: Xét tứ giác BMCN có \(\widehat{MBN}+\widehat{MCN}=90^0+90^0=180^0\)
nên BMCN là tứ giác nội tiếp đường tròn đường kính MN
=>B,M,C,N cùng thuộc đường tròn tâm O đường kính MN
Tâm O là trung điểm của MN
Bài này khá căn bản thôi do tam giác ABC đều
`=>hatA=hatB=hatC=60^o`
`\hat{BOC}` là góc ở tâm nên gấp 2 lần góc nội tiếp
`=>hat{BOC}=2hatA=120^o`
Vì `hat{OBM}=hat{OCM}=90^o`(do các tt lần lượt lại B,C)
`hat{BOC}+hat{OBM}+hat{OCM}+hat{BMC}=360^o`( đây là tứ giác)
`=>hat{BMC}=360^o-(hat{BOC}+hat{OBM}+hat{OCM}+hat{BMC})=60^o`
A B M C O D
vẽ trên máy nên k dc chính xác
a, Ta có: góc BAM = góc CAM (gt)
=> \(\widebat{BM}=\widebat{CM}\) (2 góc nội tiếp bằng nhau chắn 2 cung bằng nhau)
=>BM = CM (liên hệ giữa cung và dây)
=>t/g BMC cân tại M
b, Ta có: góc AMB = góc ACB (2 góc nội tiếp cùng chắn 1 cung)
góc AMC = góc ABC (2 góc nội tiếp cùng chắn 1 cung)
=> góc AMB + góc AMC = góc ACB + góc ABC
hay góc BMC = góc ABC + góc ACB (đpcm)
c, Xét t/g ABD và t/g AMC
góc BAD = góc MAC (gt)
góc ABD = góc AMC (c/m câu b)
=>t/g ABD đồng dạng vs t/g AMC (g.g)
=>AB/AD = AM/AC => AB.AC=AD.AM (đpcm)