Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: XétΔABC có DE//BC
nên \(\dfrac{DE}{BC}=\dfrac{AD}{AB}\)
=>\(\dfrac{DE}{8}=\dfrac{2}{5}\)
=>\(DE=\dfrac{2}{5}\cdot8=\dfrac{16}{5}=3,2\left(cm\right)\)
b: Xét tứ giác BDFC có
DF//BC
BD//CF
Do đó: BDFC là hình bình hành
=>DF=BC=8cm
DE+EF=DF
=>EF=DF-DE=8-3,2=4,8(cm)
Xét ΔIEF và ΔICB có
\(\widehat{IEF}=\widehat{ICB}\)(hai góc so le trong, EF//BC)
\(\widehat{EIF}=\widehat{CIB}\)(hai góc đối đỉnh)
Do đó: ΔIEF đồng dạng với ΔICB
=>\(\dfrac{IF}{IB}=\dfrac{EF}{CB}=\dfrac{4.8}{8}=\dfrac{3}{5}\)
Bài 6 :
Tự vẽ hình nhá :)
a) Gọi O là giao điểm của AC và EF
Xét tam giác ADC có :
EO // DC => AE/AD = AO/AC (1)
Xét tam giác ABC có :
OF // DC
=> CF/CB = CO/CA (2)
Từ (1) và (2) => AE/AD + CF/CB = AO/AC + CO/CA = AO + CO/AC = AC/AC = 1 => đpcm
Bài 7 :
A B C D G K M F E
a) Do EF // AB => CF / CA = EF / AB => CF / EF = AC / AB (1)
Dựng MG // AC và M là trung điểm của cạnh BC => GM là đường trung bình của tam giác ABC => G là trung điểm của cạnh AB =>AG = BG
Do DK // GM => AD / AG = DK / GM => AD / BG = DK / GM
=> DK / AD = GM / BG = \(\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB} \left(2\right)\)
Từ (1) và (2) => CF / EF = DK / AD
Mà tứ giác ADEF là hình bình hành ( vì EF // AD và DE // AF ) nên AD = È
=> CF = DK ( đpcm )
Bài 8 :
A B C M N 38 11 8
Ta có : AB = AM + MB = 11 + 8 = 19 ( cm )
Áp dụng hệ quả định lí Ta-lét vào tam giác ABC, ta có :
AM / AB = AN / AC => AM + AB / AB = AN + AC / AC => 19 + 11 / 19 = AN + 38 / 38 => 30/19 = 38 + AN / 38
=> 1140 = 19.AN + 722
=> AN = ( 1140 - 722 ) / 19 = 22 ( cm )
=> NC = 38 - 12 = 26 ( cm )
dạ DF cắt AC tại E ạ em nhầm xin ai làm ơn giúp em nốt ạ bài gấp lắm
a: Xét ΔABC có DE//BC
nên \(\dfrac{DE}{BC}=\dfrac{AD}{AB}\)
=>\(\dfrac{DE}{8}=\dfrac{2}{5}\)
=>\(DE=8\cdot\dfrac{2}{5}=\dfrac{16}{5}=3,2\left(cm\right)\)
b: Xét tứ giác BDFC có
BD//FC
DF//BC
Do đó: BDFC là hình bình hành
=>DF=BC=8cm
Ta có: DE+EF=DF
=>EF+3,2=8
=>EF=4,8(cm)
Xét ΔIEF và ΔICB có
\(\widehat{IEF}=\widehat{ICB}\)(hai góc so le trong, EF//BC)
\(\widehat{EIF}=\widehat{CIB}\)(hai góc đối đỉnh)
Do đó: ΔIEF đồng dạng với ΔICB
=>\(\dfrac{IF}{IB}=\dfrac{EF}{CB}=\dfrac{3}{5}\)
a: Xét ΔABC co AI là phân giác
nên IB/IC=AB/AC
=>AB/6=3/4,5=2/3
=>AB=4cm
Xét ΔBAC có MI//AC
nên MI/AC=BM/BA=BI/BC=3/7,5=2/5
=>MI/6=BM/4=2/5
=>MI=12/5cm; BM=8/5cm
b: MB/MA=BI/IC=BA/AC