K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2020

a) Xét tứ giác AMCH có 

I là trung điểm của đường chéo AC(gt)

I là trung điểm của đường chéo MH(M và H đối xứng nhau qua I)

Do đó: AMCH là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Hình bình hành AMCH trở thành hình thoi khi AM=CM

mà \(CM=\dfrac{BC}{2}\)(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)

Xét ΔABC có 

AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)

\(AM=\dfrac{BC}{2}\)(cmt)

Do đó: ΔABC vuông tại A(Định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)

\(\widehat{BAC}=90^0\)

Vậy: Để AMCH là hình thoi thì ΔABC có thêm điều kiện \(\widehat{BAC}=90^0\)

a: Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

góc AMC=90 độ

Do đó: AMCKlà hình chữ nhật

b: Xét tứ giác AKMB có

AK//MB

AK=MB

Do đó: AKMB là hình bình hành

12 tháng 11 2017

a)Vì E là trung điểm AC suy ra AE=EC

Vì K đối xứng M qua E suy ra EM=EK

từ 2đk trên suy ra từ giác AKCM là hình bình hành

12 tháng 11 2017

b)từ ý a suy ra AK//BC và AK=MC mà MC=BM suy ra BM=AK

tứ giác AKMB có AK//BM và AK=BM suy ra AKMB là hình bình hành

ta có AD=DM nên DB=DK hay B,D,K thẳng hàng

18 tháng 11 2019

https://coccoc.com/search?query=cho+tam+gi%C3%A1c+abc+vu%C3%B4ng+t%E1%BA%A1i+a+am+l%C3%A0+trung+tuy%E1%BA%BFn

#Theo link này nhoooo