K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2018

a) Xét tam giác vuông AEO và tam giác vuông AFO có:

Cạnh AO chung

\(\widehat{EAO}=\widehat{FAO}\)   (gt)

\(\Rightarrow\Delta AEO=\Delta AFO\)   (Cạnh huyền - góc nhọn)

\(\Rightarrow OE=OF\)

Do O thuộc trung trực BC nên tam giác OBC cân tại O hay OB = OC.

Xét tam giác vuông EBO và tam giác vuông FCO có:

EO = FO (cmt)

OB = OC (cmt)

\(\Rightarrow\Delta EBO=\Delta FCO\)   (Cạnh huyền  - cạnh góc vuông)

\(\Rightarrow BE=CF.\)

b) Từ B, kẻ đường thẳng song song AC, cắt EF tại K.

Ta có : \(\widehat{BKE}=\widehat{AFE}\) nên  \(\widehat{BKE}=\widehat{AEF}\) . Vậy tam giác BEK cân tại B hay BE = BK

Lại có BE = CF nên BK = FC

Xét tam giác BKM và tam giác CFM có:

BM = CM

BK = CF 

\(\widehat{KBM}=\widehat{FCM}\)   (So le trong)

\(\Rightarrow\Delta BKM=\Delta CFM\left(c-g-c\right)\)

\(\Rightarrow\widehat{BMK}=\widehat{CMF}\)   (Hai góc tương ứng)

Vậy K, M, F thẳng hàng.

c) Ta cần chứng minh  \(IA^2+IE^2+IO^2+IF^2=OA^2\)

Ta thấy ngay AE = AF, OE = OF nên OA là trung trực của EF.

Vậy thì \(AO\perp EF\) hay các tam giác AIE và IOF vuông.

Áp dụng định lý Pi-ta-go ta có: \(AI^2+EI^2=AE^2;IO^2+IF^2=OF^2=OE^2\)

Xét tam giác buông AEO thì \(AE^2+EO^2=AO^2\)

Vậy nên \(AI^2+EI^2+IO^2+IF^2=AO^2.\)

1 tháng 4 2019

a, xét t.giác ABM và t.giác ACM có:

                 AB=AC(gt)

                 AM cạnh chung

=> t.giác ABM=t.giác ACM(CH-CGV)

23 tháng 3 2018

Em tham khảo tại đây nhé.

Câu hỏi của do thanh nhan - Toán lớp 7 - Học toán với OnlineMath

a: \(\widehat{HAB}=90^0-60^0=30^0\)

b: Xét ΔAHI và ΔADI có

AH=AD

HI=DI

AI chung

Do đó: ΔAHI=ΔADI

Ta có: ΔAHD cân tại A

mà AI là đường trung tuyến

nên AI là đường cao

c: Xét ΔAHK và ΔADK có

AH=AD

\(\widehat{HAK}=\widehat{DAK}\)

AK chung

Do đó: ΔAHK=ΔADK

Suy ra: \(\widehat{AHK}=\widehat{ADK}=90^0\)

=>DK//AB