Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B D C H E K I
Trong tia đối của tia HB và ED lấy điểm K và I sao cho : \(HK=EI\)
Theo tính chất cạnh đối diện với góc , chứng minh được \(KE< KC\)
Ta dễ dàng chứng minh được \(\Delta KHE=\Delta IEH\)(c-g-c)
Suy ra \(KE=IH\)\(< =>IH< KC\)
Đến đây mình chịu rồi
VÌ CẬU NÓI CÂU a) VÀ CÂU b) cậu làm đc r nên mk sẽ k giải phần đấy. Mk sẽ giải nguyên phần c) thôi
Làm
Từ E kẻ EK vuông góc với BC tại K
vì DH vuông góc với AC
ED vuông góc AE hay ED vuông góc với AC=> BH // ED
=> góc HBE = BED ( so le trong ) (1)
mặt khác BD = DE theo câu a
=> tam giác BDE cân tại D => góc EBD = BED (2)
Từ 1 , 2 suy ra góc HBE = EBK
Xét 2 TG vuông BHE và BKE có
HE là cạnh chung
góc HBE = EBK (theo cmt )
Do đó : tam giác BHE = BKE ( ch_gnh )
=> EH = EK
Trong tam giác EKC có EC là cạnh huyền
=> EC > EK => EC > EH
HỌC TỐT Ạ
A
a. Xét tam giác ABD và tam giác EBD có
cạnh BD chung
góc ABD = góc EBD [ vì BD là pg góc B ]
BA = BE [ gt ]
Do đó ; tam giác ABD = tam giác EBD [ c.g.c ]
\(\Rightarrow\)góc BAD = góc BED [ góc tương ứng ]
mà bài cho góc BAD = 90độ
\(\Rightarrow\)góc BED = 90độ
Vậy DE vuông góc với BE
b.Theo câu a tam giác ABD = tam giác BED
\(\Rightarrow\)DA = DE nên D thuộc đường trung trực của AE
mà BA = BE nên B thuộc đường trung trực của AE
\(\Rightarrow\)BD thuộc đường trung trực của AE
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
Cho tam giác ABC vuông tại A, BD là tia phân giác của góc B ( d thuộc AC). Kẻ DEvuông gócBC ( E thuộc BC). Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:
a) BD là đường trung trực của AF
b) AD < BC
c) Ba điểm E, D, F thẳng hàng