K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi O là trung điểm của BC

góc AFH+góc AEH=180 độ

=>AFHE nội tiếp đường tròn đường kính AH

=>AFHE nội tiếp (M)

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp đường tròn đường kính BC

=>BFEC nội tiếp (O)

góc MFO=góc MFH+góc OFH

=góc MHF+góc OCF

=góc FBC+góc FCB=90 độ

=>MF là tiếp tuyến của (O)

Xét ΔMFO và ΔMEO có

MF=ME

OF=OE

MO chung

=>ΔMFO=ΔMEO

=>góc MEO=90 độ

=>ME là tiếp tuyến của (O)

9 tháng 8 2023

Bạn cần phải chứng minh E, F ϵ ( O ) nữa nhé, vì vẫn có thể xảy ra trường hợp ME, MF là cát tuyến hoặc nằm ngoài ( O ). Phần này thì dùng đường trung tuyến trong tam giác vuông là xong.

 

14 tháng 5 2023

Ai giúp em nhanh bài tập này được không ạ?

 

16 tháng 8 2021

A B C D E F O I J M P Q L K T

a) Vì tứ giác BFEC nội tiếp nên \(\widehat{PFB}=\widehat{ACB}=\widehat{PBF}\) suy ra \(PF=PB\)

Suy ra \(MP\perp AB\) vì MP là trung trực của BF. Do đó \(MP||CF\). Tương tự \(MQ||BE\)

b) Dễ thấy M,I,J đều nằm trên trung trực của EF cho nên chúng thẳng hàng. Vậy IJ luôn đi qua M cố định.

c) Gọi FK cắt AD tại T ta có \(FK\perp AD\) tại T. Theo hệ thức lượng \(IE^2=IF^2=IT.IL\)

Suy ra \(\Delta TIE~\Delta EIL\). Lại dễ có \(EI\perp EM\), suy ra ITKE nội tiếp

Do vậy \(\widehat{ILE}=\widehat{IET}=\widehat{IKT}=90^0-\widehat{LIK}\). Vậy \(IK\perp EL.\)

1: góc ABP=1/2*sđ cung AP=90 độ

=>BP//CH

góc ACP=1/2*sđ cung AP=90 độ

=>CP//BH

mà BP//CH

nên BHCP là hình bình hành

=>BC cắt HP tại trung điểm của mỗi đường

=>M là trung điểm của HP

tứ giác BFEC có hai góc kề nhau cùng nhìn đoạn BC dưới một góc vuông : BFCˆ=BECˆ(=90)BFC^=BEC^(=90) ==> Tức giác BFEC là tứ giác nội tiếp

==> 4 điểm B,E,F,C cùng thuộc một đường tròn.

a:

H đối xứng K qua BC

=>BH=BK CH=CK

Xét ΔBHC và ΔBKC có

BH=BK

HC=KC

BC chung

=>ΔBHC=ΔBKC

=>góc BHC=góc BKC

góc BHC=180 độ-góc HBC-góc HCB

=90 độ-góc HBC+90 độ-góc HCB

=góc ABC+góc ACB

=180 độ-góc BAC

=>góc BAC+góc BHC=180 độ

=>góc BAC+góc BKC=180 độ

=>ABKC là tứ giác nội tiếp

b: Xét (O) có

ΔABM nội tiếp

AM là đường kính

=>ΔABM vuông tại B

=>BM//CH

Xét (O) có

ΔACM nội tiếp

AM là đường kinh

=>ΔACM vuông tại C

=>CM//BH

mà BM//CH

nên BHCM là hình bình hành

=>CB căt HM tại trung điểm của mỗi đường

=>H,I,M thẳng hàng